首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H M Cox  J L Krstenansky 《Peptides》1991,12(2):323-327
The antisecretory potency of NPY and a series of truncated and structural analogues of NPY have been tested upon mucosal preparations of rat small intestine. Single amino acid substitutions, i.e., [Ile34]NPY, [Pro34]NPY, resulted in severe attenuation and loss of biological activity, respectively, and neither peptide affected NPY responses. An agonist order of potency: NPY greater than or equal to [Glu16,Ser18,Ala22,Leu28,31]NPY (ESALL-NPY) greater than [Cys2,Aoc5-24,DCys27]NPY (C2-NPY) greater than [Aoc5-24]NPY greater than [Des-Ser3,Des- Lys4]C2-NPY much greater than [Cys5,Aoc7-20,DCys24]NPY (C5-NPY) greater than equal to [DCys7,Aoc8-17, Cys20]NPY (C7-NPY) greater than [Aoc8-17]NPY greater than or equal to [Ile34]C7-NPY much greater than [Aoc2-27]NPY much greater than [Pro34]C2-NPY was obtained. The use of analogues based upon the tertiary structural model of NPY with varying amounts of N- and C-terminal helical regions removed and replaced with a single 8-aminooctanoic acid residue (Aoc) has allowed us to assess the structural requirements for activation of the regions in close apposition to each other. The polyproline helix, beta-turn and majority of the amphipathic alpha-helix serve a structural role bringing N- and C-terminal residues together for optimal receptor recognition and activation.  相似文献   

2.
Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH-SY5Y, CHP-234, and MHH-NB-11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP-234 and MHH-NB-11 binding of [3H]propionyl-NPY was observed with Kd-values of 0.64 +/- 0.07 nM and 0.53 +/- 0.12 nM, respectively, determined by saturation analysis with non-linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]-NPY (NPY-Y1, NPY-Y5), [Ahx(5-24)]-NPY (NPY-Y2), [Ala31, Aib32]-NPY (NPY-Y5), NPY [3-36] (NPY-Y2, NPY-Y5), and NPY [13-36] (NPY-Y2). Both cell lines, CHP-234 and MHH-NB-11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY-Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin-induced cAMP production in an ELISA.  相似文献   

3.
Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response. The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded that Y1 receptor stimulation is associated with both mobilization of intracellular calcium and inhibition of adenylate cyclase activity.  相似文献   

4.
The present study evaluated the effects of both intraperitoneal (i.p. ) and intracerebroventricular administration of selective Y(1) [(Leu(31), Pro(34))-NPY] and Y(2) [(Pro(13), Tyr(36))-NPY (13-36)] receptor agonists on food intake in satiated goldfish. Food intake (FI) was significantly increased by central administration of the Y(1) agonist (1 microg), but not by the Y(2) agonist, at 2 h postinjection. The feeding increase induced by (Leu(31), Pro(34))-NPY was in a similar magnitude to that obtained after ICV injection of the neuropeptide Y, and both feeding stimulations were reversed by the NPY (27-36), a general NPY antagonist. The i.p. administration of the agonists either did not significantly modify (Y(2) agonist) or decreased (Y(1) agonist) food intake in goldfish. These data indicate that it is the Y(1)-like (similar to Y(1) and/or Y(5)) receptor, and not Y(2), that is involved in the central modulation of the feeding behavior in goldfish. We also investigated the possible involvement of opioid peptides as mediators of the NPY stimulatory action on food intake in goldfish. The ICV administration of naloxone (10 microg), a general opioid antagonist, blocked the NPY-induced feeding in goldfish, suggesting that the opioidergic system is involved in feeding regulation by NPY.  相似文献   

5.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

6.
In a rat endovascular middle cerebral artery occlusion (MCAO) stroke model, we previously showed that intracerebroventricular (ICV) injection of neuropeptide Y (NPY) or an Y1 receptor agonist, [Leu(31),Pro(34)]-NPY, increased the infarct volume, that an Y1 receptor antagonist, BIBP3226, reduced the infarct volume, and that an Y2 receptor agonist, NPY3-36, had no effect. In this study, we used electron paramagnetic resonance (EPR) spectroscopy to measure nitric oxide (NO) and examined how ICV administration of NPY or its receptor analogs would modulate the brain NO level between the bregma levels +2 and -4 mm during MCAO, since excessive NO mediates ischemic damage. The relative brain NO concentration was increased to 131.94 +/- 7.99% (mean +/- SEM; n = 8) at 15 min of MCAO. NPY treatment further increased the relative brain NO concentration to 250.94 +/- 50.48% (n = 8), whereas BIBP3226 significantly reduced the brain NO concentration to 69.63 +/- 8.84% (n = 8). [Leu(31),Pro(34)]-NPY (137.61 +/- 14.54%; n = 7) or NPY3-36 (129.23 +/- 21.77%; n = 8) did not affect the brain NO concentration at 15 min of MCAO. Our results suggest that the NPY-Y1 receptor activation mediates ischemic injury via NO overproduction and that inhibition of the Y1 receptor may confer protection via suppression of excessive NO production during ischemia.  相似文献   

7.
Gehlert DR  Shaw JL 《Peptides》2007,28(2):241-249
The brain neuropeptide Neuropeptide Y (NPY) is an important modulator of a number of centrally mediated processes including feeding, anxiety-like behaviors, blood pressure and others. NPY produces its effects through at least four functional G-protein coupled receptors termed Y1, Y2, Y4 and Y5. In the brain, the Y1 and Y2 receptor subtypes are the predominant receptor population. To better understand the roles of NPY, genetically modified mice lacking NPY were produced but lacked the expected phenotypes. These mice have previously been reported to have a marked increase in Y2 receptor binding. In the present study, we found an upregulation of both Y1 and Y2 receptor binding and extended these findings to the female. These increases were as large as 10-fold or greater in many brain regions. To assess functional coupling of the receptors, we performed agonist-induced [(35)S]GTPgammaS autoradiography. In the mouse brain, the Y1/Y4/Y5 agonist Leu(31),Pro(34)-NPY increased [(35)S]GTPgammaS binding with a regional distribution consistent with that produced when labeling adjacent sections with [(125)I]-Leu(31),Pro(34)-PYY. In a few brain regions, minor increases were noted in the agonist-induced binding when comparing knock out mice to wild type. The Y2 agonist C2-NPY stimulated [(35)S]GTPgammaS binding in numerous brain areas with a regional distribution similar to the binding observed with [(125)I]-PYY3-36. Again, no major increases were noted in the functional activation of Y2 receptors between knock out and wild type mice. Therefore, the increased Y1 and Y2 binding observed in the NPY knock out mice does not represent an increase in NPY receptor mediated signaling and is likely due to an increase in spare (uncoupled) receptors.  相似文献   

8.
It has been shown that centrally administered neuropeptide Y (NPY) delays gastric emptying. To determine the receptor subtypes of NPY mediating the inhibitory effects on gastric emptying, effects of intracerebroventricular injection of NPY, [Leu31,Pro34]NPY (a Y1 agonist) and NPY-(3-36) (a Y2 agonist) on solid gastric emptying and postprandial antropyloric motility were studied in conscious rats. Intracerebroventricular injection of NPY and NPY-(3-36), but not [Leu31,Pro34] NPY, delayed solid gastric emptying in a dose-dependent manner (0.03-3 nmol). After the feeding (40 min), contractions with low frequency and high amplitude of the antrum were frequently observed, and the peak contraction of the antrum occurred most often 3-6 s before the peak contraction of the pylorus. Intracerebroventricular injection of NPY and NPY-(3-36) (3 nmol), but not [Leu31,Pro34]NPY, significantly reduced antral contractions and the number of antropyloric coordination events. It is suggested that centrally administered NPY impairs postprandial antral contractions and antropyloric coordination via Y2 receptors, resulting in delayed gastric emptying.  相似文献   

9.
10.
The structure of [Ala(31), Pro(32)]-NPY, a neuropeptide Y mutant with selectivity for the NPY Y(5)-receptor (Cabrele, C., Wieland, H. A., Stidsen, C., Beck-Sickinger, A. G., (2002) Biochemistry XX, XXXX-XXXX (companion paper)), has been characterized in the presence of the membrane mimetic dodecylphosphocholine (DPC) micelles using high-resolution NMR techniques. The overall topology closely resembles the fold of the previously described Y(5)-receptor-selective agonist [Ala(31), Aib(32)]-NPY (Cabrele, C., Langer, M., Bader, R., Wieland, H. A., Doods, H. N., Zerbe, O., and Beck-Sickinger, A. G. (2000) J. Biol. Chem 275, 36043-36048). Similar to wild-type neuropeptide Y (NPY) and [Ala(31), Aib(32)]-NPY, the N-terminal residues Tyr(1)-Asp(16) are disordered in solution. Starting from residue Leu(17), an alpha helix extends toward the C-terminus. The decreased density of medium-range NOEs for the C-terminal residues resulting in larger RMSD values for the backbone atoms of Ala(31)-Tyr(36) indicates that the alpha helix has become interrupted through the [Ala(31), Pro(32)] mutation. This finding is further supported by (15)N-relaxation data through which we can demonstrate that the well-defined alpha helix is restricted to residues 17-31, with the C-terminal tetrapeptide displaying increased flexibility as compared to NPY. Surprisingly, increased generalized order parameter as well as decreased (3)J(HN)(alpha) scalar coupling constants reveal that the central helix is stabilized in comparison to wild-type NPY. Micelle-integrating spin labels were used to probe the mode of association of the helix with the membrane mimetic. The Y(5)-receptor-selective mutant and NPY share a similar orientation, which is parallel to the lipid surface. However, signal reductions due to efficient electron, nuclear spin relaxation were much less pronounced for the surface-averted residues in [Ala(31), Pro(32)]-NPY when compared to wild-type DPC-bound NPY. Only the signals of residues Asn(29) and Leu(30) were significantly more reduced in the mutant. The postulation of a different membrane binding mode of [Ala(31), Pro(32)]-NPY is further supported by the faster H/D exchange at the C-terminal amide protons. We conclude that arginine residues 33 and 35, which are believed to be directly involved in forming contacts to acidic receptor residues at the membrane-water interface, are no longer fixed in a well-defined conformation close to the membrane surface in [Ala(31), Pro(32)]-NPY.  相似文献   

11.
Summary An intracerebroventricular (icv) injection of neuropeptide Y (NPY) or [Leu31, Pro34]-NPY (non-Y2 receptor agonist) given during middle cerebral artery occlusion (MCAO) increases the infarct volume and nitric oxide (NO) overproduction in the rat brain. An icv injection of NPY3-36 (non-Y1 receptor agonist) has no effects, while BIBP3226 (selective Y1 receptor antagonist) reduces the infarct volume and NO overproduction. This study examined the effects of NPY or its receptor analog on the immunoreactivity (ir) for three isoforms of NO synthase (NOS) following 1h of MCAO and 3h of reperfusion. Focal ischemia/reperfusion led to increased ir for neuronal NOS (nNOS) within the ipsilateral caudate putamen and insular cortex. NPY or [Leu31, Pro34]-NPY enhanced but BIBP3226 suppressed such increase in the nNOS-ir. Focal ischemia/reperfusion also led to an ipsilateral increase in extent and/or intensity of the ir for endothelial NOS (eNOS) in the caudate putamen and/or parietal cortex. NPY or [Leu31, Pro34]-NPY suppressed but BIBP3226 enhanced such change in the eNOS-ir. NPY3-36 did not consistently influence the nNOS-ir or eNOS-ir following MCAO. Specific ir for inducible NOS was undetectable. These opposing effects of NPY-Y1 receptor activation or inhibition on nNOS and eNOS may lead to harmful or beneficial consequences following ischemia/reperfusion.  相似文献   

12.
Central injections of neuropeptide Y (NPY) increase food intake in Syrian hamsters; however, the effect of NPY on sexual behavior in hamsters is not known nor are the receptor subtypes involved in feeding and sexual behaviors. We demonstrate that NPY inhibits lordosis duration in a dose-related fashion after lateral ventricular injection in ovariectomized, steroid-primed Syrian hamsters. Under the same conditions, we compared the effect of two receptor-differentiating agonists derived from peptide YY (PYY), PYY-(3-36) and [Leu(31),Pro(34)]PYY, on lordosis duration and food intake. PYY-(3-36) produced a 91% reduction in lordosis duration at 0.24 nmol. [Leu(31),Pro(34)]PYY was less potent, producing a reduction in lordosis duration (66%) only at 2.4 nmol. These results suggest NPY effects on estrous behavior are principally mediated by Y2 receptors. PYY-(3-36) and [Leu(31),Pro(34)]PYY stimulated comparable dose-related increases in total food intake (2 h), suggesting Y5 receptors are involved in feeding. The significance of different NPY receptor subtypes controlling estrous and feeding behavior is highlighted by results on expression of Fos immunoreactivity (Fos-IR) elicited by either PYY-(3-36) or [Leu(31),Pro(34)]PYY at a dose of each that differentiated between the two behaviors. Some differences were seen in the distribution of Fos-IR produced by the two peptides. Overall, however, the patterns of expression were similar. Our behavioral and anatomic results suggest that NPY-containing pathways controlling estrous and feeding behavior innervate similar nuclei, with the divergence in pathways controlling the separate behaviors characterized by linkage to different NPY receptor subtypes.  相似文献   

13.
A Cervin 《Regulatory peptides》1992,39(2-3):237-246
Recent investigations have shown neuropeptide Y (NPY) to be present in the rabbit maxillary sinus, and NPY is known to be released upon sympathetic nerve stimulation. To study, in vivo, the effect on mucociliary activity and blood flow, NPY 1-36 and some of its analogues were injected intra-arterially. The effects of the Y1/Y2 agonist NPY 1-36 was compared with the ones of the Y2 agonist NPY 16-36, the Y1-agonist [Leu31,Pro34]NPY and the Y1/Y2 agonist peptide YY. Mucociliary response was recorded photoelectrically and expressed as a percentage of the basal mucociliary activity immediately prior to challenge. The effect on blood flow was measured with laser Doppler flowmetry and expressed as a percentage of the mean blood flow during the 60 s preceding challenge. NPY 1-36 and NPY 16-36 both reduced mucociliary activity dose-dependently at equimolar dosages (0.024-1.2 nmol/kg). The greatest effect was seen after the highest dosage tested. NPY 1-36 reduced mucociliary activity by 14.6 +/- 1.8%, and NPY 16-36 by 13.2 +/- 1.4%. At the highest dosage tested the Y1 receptor agonist [Leu31,Pro34]NPY did not significantly reduce mucociliary activity, whereas PYY reduced mucociliary activity by 15.0 +/- 1.8%. Injections of NPY 16-36 had no effect on blood flow whereas NPY 1-36, [Leu31,Pro34]NPY and PYY all reduced blood flow dose-dependently. Maximal decrease was seen at the highest dosage tested and was 47.1 +/- 5.4%, 70.4 +/- 7.4% and 58.2 +/- 8.4%, respectively. These findings suggest the mucociliary effects to be mediated via Y2 receptors whereas blood flow is regulated via Y1 receptors.  相似文献   

14.
In this in vitro study, we investigated the influence of neuropeptide Y (NPY) Y1 receptor activation or inhibition on the viability of cultured neuronal or glial cells following oxygen glucose deprivation (OGD). Viability of cultured cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. When compared to the vehicle-treated control group, treatment with NPY or [Leu31,Pro34]-NPY (Y1 agonist) reduced viability of cultured SK-N-MC (Y1-expressing) human neuronal cells at 24 h after 1 h of OGD, while BIBP3226 (Y1 antagonist) improved viability. Except at the highest concentration of NPY used in the study, treatment with NPY or NPY3-36 (Y2 agonist) did not influence viability of cultured SH-SY5Y (Y2-expressing) human neuronal cells at 24 h after 1 h of OGD. In addition, treatment with NPY, [Leu31,Pro34]-NPY, NPY3-36, or BIBP3226 did not affect viability of cultured primary astrocytes at 24 h after 4 h of OGD. The present results agree with those of a recent in vivo study. Activation of NPY-Y1 receptors may mediate ischemic pathophysiological processes, and inhibiting the Y1 receptors may be protective. The combination of OGD and cultured neuronal cells may be useful in future studies on the neuroprotective and harmful mechanisms of NPY-Y1 receptor inhibition and activation during ischemia, respectively.  相似文献   

15.
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.  相似文献   

16.
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.  相似文献   

17.
We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.04 nM for BIBO3304 vs. 2.4 +/- 0.07 nM for BIBP3226),while CGP71683A has high affinity for 25% of specific [125I][Leu31,Pro34]PYY binding sites. Both BIBO3304 and CGP71683A (at 1.0 microM) were unable to compete for a significant proportion of specific [125I]PYY3-36/Y2 sites. The purported Y2 antagonist T4[NPY33-36]4 competed against [125I]PYY3-36 binding sites with an affinity of 750 nM. These results were confirmed in HEK 293 cells transfected with either the rat Y1, Y2, Y4, or Y5 receptor cDNA. BIBO3304, but not CGP71683A, competed with high affinity for [125I][Leu31,Pro34]PYY binding sites in HEK 293 cells transfected with the rat Y1 receptor cDNA, whereas the reverse profile was observed upon transfection with the rat Y5 receptor cDNA. Additionally, both molecules were inactive at Y2 and Y4 receptor subtypes expressed in HEK 293 cells. Receptor autoradiographic studies revealed the presence of [125I][Leu31,Pro34]PYY/BIBO3304-insensitive sites in the rat brain as reported previously for BIBP3226. Finally, the selective antagonistic properties of BIBO3304 were demonstrated in a Y1 bioassay (rabbit saphenous vein; pA2 value of 9.04) while being inactive in Y2 (rat vas deferens) and Y4 (rat colon) bioassays. These results confirm the high affinity and selectivity of BIBO3304 and CGP71683A for the Y1 and Y5 receptor subtypes, respectively, while the purported Y2 antagonist, T4[NPY33-36]4 possesses rather low affinity for this receptor.  相似文献   

18.
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and acts in humans via at least three receptor subtypes: Y1, Y2, and Y5. Whereas selective agonists and antagonists are known for the Y2- and Y5-receptors, the Y1-receptor still lacks a highly selective agonist. This work presents the first NPY-based analogues with Y1-receptor preference and agonistic properties. Furthermore, the importance of specific amino acids of NPY for binding to the Y-receptor subtypes is presented. Amongst the analogues tested, [Phe7,Pro34]pNPY (where pNPY is porcine neuropeptide Y) showed the most significant Y1-receptor preference (> 1 : 3000-fold), with subnanomolar affinity to the Y1-receptor, and Ki values of approximately 30 nM for the Y2- and Y5-subtype, respectively. Variations of position 6, especially [Arg6,Pro34]pNPY and variations within positions 20-23 of NPY were found to result in further analogues with significant Y1-receptor preference (1 : 400-1 : 2000). In contrast, cyclo S-S [Cys20,Cys24]pNPY was found to be a highly selective ligand at the Y2-receptor, binding only threefold less efficiently than NPY. Analogues containing variations of positions 31 and 32 showed highly reduced affinity to the Y1-receptor, while binding to the Y5-receptor was affected less. Inhibition of cAMP-accumulation of selected peptides with replacements within position 20-23 of NPY showed preserved agonistic properties. The NPY analogues tested give insights into ligand-receptor interaction of NPY at the Y1-, Y2- and Y5-receptor and contribute to our understanding of subtype selectivity. Furthermore, the Y1-receptor-preferring peptides are novel tools that will provide insight into the physiological role of the Y1-receptor.  相似文献   

19.
The effects of estradiol on neuropeptide Y (NPY) neurotransmission in skeletal muscle resistance vessels have not been described. The purpose of this study was to determine the effects of long-term estradiol supplementation on NPY overflow, degradation, and vasoconstriction in gastrocnemius first-order arterioles of adult female rats. Female rats (4 mo; n = 34) were ovariectomized (OVX) with a subset (n = 17) receiving an estradiol pellet (OVE; 17β-estradiol, 4 μg/day). After conclusion of the treatment phase (8 wk), arterioles were excised, placed in a physiological saline solution (PSS) bath, and cannulated with micropipettes connected to albumin reservoirs. NPY-mediated vasoconstriction via a Y(1)-agonist [Leu31Pro34]NPY decreased vessel diameter 44.54 ± 3.95% compared with baseline; however, there were no group differences in EC(50) (OVE: -8.75 ± 0.18; OVX: -8.63 ± 0.10 log M [Leu31Pro34]NPY) or slope (OVE: -1.11 ± 0.25; OVX: -1.65 ± 0.34% baseline/log M [Leu31Pro34]NPY). NPY did not potentiate norepinephrine-mediated vasoconstriction. NPY overflow experienced a slight increase following field stimulation and significantly increased (P < 0.05) over control conditions in the presence of a DPPIV inhibitor (diprotin A). Estradiol status did not affect DPPIV activity. These data suggest that NPY can induce a moderate decrease in vessel diameter in skeletal muscle first-order arterioles, and DPPIV is active in mitigating NPY overflow in young adult female rats. Long-term estradiol supplementation did not influence NPY vasoconstriction, overflow, or its enzymatic breakdown in skeletal muscle first-order arterioles.  相似文献   

20.
The supraoptic nuclei are innervated by the A1 neurons of the caudal ventrolateral medulla. Substances colocalized in the A1 terminals include norepinephrine (NE), substance P (SP), ATP, and neuropeptide Y (NPY). ATP, acting at P(2x) receptors, caused rapid and unsustained stimulation of vasopressin (VP) and oxytocin (OT) release from perifused explants of the hypothalamo-neurohypophysial system. SP elicited a concentration-dependent stimulation of VP and OT release that was large and sustained compared with other stimuli. ATP, but not phenylephrine (PE, alpha(1)-adrenergic agonist), augmented the response to SP (1 microM). In contrast, NPY did not alter basal nor ATP-induced VP or OT release, but it did cause sustained potentiation of PE-induced VP and OT release. The Y(1)-agonist, [Leu(31),Pro(34)]-NPY, increased VP and OT release, suggesting that the ineffectiveness of NPY reflects opposing actions at pre- and postsynaptic receptors. However, [Leu(31),Pro(34)]-NPY did not potentiate hormone responses to ATP or PE. The differential responses to these colocalized neurotransmitters and neuropeptides illustrate the range of potential responses that stimulation of this pathway might elicit from supraoptic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号