首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress.  相似文献   

2.
Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors   总被引:3,自引:0,他引:3  
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents.  相似文献   

3.
Protein-tyrosine phosphatase 1B (PTP1B) is an important negative regulator of insulin and leptin signaling in vivo. Mice lacking PTP1B (PTP1B-/- mice) are hyper-responsive to insulin and leptin and resistant to diet-induced obesity. The tissue(s) that mediate these effects of global PTP1B deficiency remain controversial. We exploited the high degree of hepatotropism of adenoviruses to assess the role of PTP1B in the liver. Liver-specific re-expression of PTP1B in PTP1B-/- mice led to marked attenuation of their enhanced insulin sensitivity. This correlated with, and was probably caused by, decreased insulin-stimulated tyrosyl phosphorylation of the insulin receptor (IR) and IR substrate 2-associated phosphatidylinositide 3-kinase activity. Analysis using phospho-specific antibodies for the IR revealed preferential dephosphorylation of Tyr-1162/1163 compared with Tyr-972 by PTP1B in vivo. Our findings show that the liver is a major site of the peripheral action of PTP1B in regulating glucose homeostasis.  相似文献   

4.
Guided by X-ray crystallography, we have extended the structure-activity relationship (SAR) study on an isoxazole carboxylic acid-based PTP1B inhibitor (1) and more potent and equally selective (>20-fold selectivity over the highly homologous T-cell PTPase, TCPTP) PTP1B inhibitors were identified. Inhibitor 7 demonstrated good cellular activity against PTP1B in COS 7 cells.  相似文献   

5.
The inhibitory effect on PTP1B caused by the addition of pyridazine analogues has been investigated. Biophysical techniques, that is, mass spectrometry (MS), nuclear magnetic resonance (NMR), and isothermal titration calorimetry (ITC) were used for the characterization. Pyridazine analogues cause catalytic oxidation of the reducing agent, generating hydrogen peroxide that oxidizes the active site cysteine on the enzyme, leading to enzyme inactivation. Two additional compound classes show the same effect. We found one common structural feature in these molecules that allows the reaction with triplet molecular oxygen to be less endothermic. A proposed mechanism for the catalytic redox cycle is described.  相似文献   

6.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

7.
Four new caged xanthones (14) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (16) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (16) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining Km, Vmax, and the ratio of Kik and Kiv, which revealed that all the compounds behaved as competitive inhibitors.  相似文献   

8.
Protein tyrosine phosphatase 1B (PTP1B) functions as major negative regulator of insulin and leptin signaling pathways. In view of this, PTP1B is an significant target for drug development against cancer, diabetes and obesity. The aim of the current study is to identify PTP1B inhibitors by means of virtual screening with docking. 523,366 molecules from ZINC database have been screened and based on DOCK grid scores and hydrogen bonding interactions five new potential inhibitors were identified. ZINC12502589, ZINC13213457, ZINC25721858, ZINC31392733 and ZINC04096400 were identified as potential lead molecules for inhibition of PTP1B. The identified molecules were subjected to Lipinski''s rule of five parameters and found that they did not violate any rule. More specific analysis of pharmacological parameters may be scrutinized through a complete ADME/Tox evaluation. Pharma algorithm was used to Calculate ADME–Tox profiles for such molecules. In general, all the molecules presented advantages and as well as disadvantages when compared to each other. No marked difference in health effects and toxicity profiles were observed among these molecules.  相似文献   

9.
Luo L  He XP  Shen Q  Li JY  Shi XX  Xie J  Li J  Chen GR 《化学与生物多样性》2011,8(11):2035-2044
Development of novel purine derivatives has attracted considerable interest, since both purine and purine-based nucleosides display a wide range of crucial biological activities in nature. We report here a novel expansion of these studies by introducing gluco- or galactopyranosyl scaffold to the N- or 9-position (or both) of 6-Cl purine moiety via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. By such an efficient reaction, a series of glycosyl-triazolyl-purines were successfully synthesized in good yields. Biological evaluation showed that the majority of these glycoconjugates were good PTP1B inhibitors with IC(50) values in low micromolar range (1.5-11.1 μM). The benzylated sugar derivatives displayed better inhibitory potency than that of the acetylated ones. Replacement of Cl by MeO at C(6) of the purine moiety decreased the inhibition in the case of benzylated (glycosyl-mono-triazolyl)-purines 11 and 12 (IC(50) >80 μM), whereas MeO-substituted benzylated bis[galactosyl-triazolyl]-purine 16 possessed the best inhibitory activity with an IC(50) value of 1.5 μM. Additionally, these compounds exhibited 2- to 57-fold selectivity over other PTPs (TCPTP, SHP1, SHP2, and LAR).  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a key regulator of the insulin-receptor and leptin-receptor signaling pathways, and it has therefore emerged as a critical antitype-II-diabetes and antiobesity drug target. Toward the goal of generating a covalent modulator of PTP1B activity that can be used for investigating its roles in cell signaling and disease progression, we report that the biarsenical probe FlAsH-EDT(2) can be used to inhibit PTP1B variants that contain cysteine point mutations in a key catalytic loop of the enzyme. The site-specific cysteine mutations have little effect on the catalytic activity of the enzyme in the absence of FlAsH-EDT(2). Upon addition of FlAsH-EDT(2), however, the activity of the engineered PTP1B is strongly inhibited, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. We show that the cysteine-rich PTP1B variants can be targeted with the biarsenical probe in either whole-cell lysates or intact cells. Together, our data provide an example of a biarsenical probe controlling the activity of a protein that does not contain the canonical tetra-cysteine biarsenical-labeling sequence CCXXCC. The targeting of "incomplete" cysteine-rich motifs could provide a general means for controlling protein activity by targeting biarsenical compounds to catalytically important loops in conserved protein domains.  相似文献   

12.
Bioassay-guided fractionation of the EtOAc extract of the root of Erythrina addisoniae (Leguminosae) resulted in the isolation of four new (14), along with 2 known prenylated isoflavonoids (56). The structures of the isolates were assigned on the basis of spectroscopic data analysis, focusing on interpretation of 1D and 2D NMR, and MS data. All the isolates were evaluated for their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), as well as their growth inhibition on MCF7, adriamycin-resistant MCF7 (MCF7/ADR), and MDA-MB-231 breast cancer cell lines. Compounds which exhibited PTP1B inhibitory activity (IC50 values ranging from 4.6 ± 0.3 to 24.2 ± 2.1 μM) showed potential cytotoxic activity (IC50 values ranging from 3.97 ± 0.17 to 11.4 ± 1.9 μM). Taken together, our data suggest that prenylated isoflavonoids, especially the isoflavone-type skeleton could be considered as new lead compounds against breast cancer via PTP1B inhibition.  相似文献   

13.
In the course of our program to search for protein tyrosine phosphatase 1B (PTPB) inhibitors, five new 5-deoxyflavonoids along with eight known derivatives were isolated from EtOAc layer of the root bark of Erythrina abyssinica. Their structures were elucidated on the basis of spectroscopic (IR, UV, MS, CD, 1D- and 2D-NMR) and physicochemical analyses. All isolates exhibited moderate inhibitory effects on the enzyme assay with IC?? values ranging from 14.9 ± 1.6 to 98.1 ± 11.3 μM. Compounds with prenyl and methoxy groups in the B ring (1, 2, 4, 8, and 13) possessed strong activity (IC(50) 14.9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC?? 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity.  相似文献   

14.
From the whole plant of Ardisia japonica, four [1,4]benzoquinones were isolated by means of bioassay-directed fractionation of the EtOH extract. Apart from the two known compounds maesanin (1) and its congener 2, two new benzoquinones, i.e., 5-ethoxy-2-hydroxy-3-[(10Z)-pentadec-10-en-1-yl][1,4]benzoquinone (3) and 5-ethoxy-2-hydroxy-3-[(8Z)-tridec-8-en-1-yl][1,4]benzoquinone (4), were identified. All compounds showed significant in vitro bioactivities against the PTP1B enzyme, with IC50 values in the range of ca. 3-19 microM.  相似文献   

15.
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence that PTP-1B has an essential function in regulating the unfolded protein response in the ER compartment. The absence of PTP-1B caused impaired ER stress-induced IRE1 signaling. More specifically, JNK activation, XBP-1 splicing, and EDEM (ER degradation-enhancing alpha-mannosidase-like protein) gene induction, as well as ER stress-induced apoptosis, were attenuated in PTP-1B knock-out mouse embryonic fibroblasts in response to two ER stressors, tunicamycin and azetidine-2 carboxylic acid. We demonstrate that PTP-1B is not just a passive resident of the ER but on the contrary has an essential role in potentiating IRE1-mediated ER stress signaling pathways.  相似文献   

16.
17.
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.  相似文献   

18.
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.  相似文献   

19.
Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target for therapeutic drug development to treat diabetes and obesity. In screening for inhibitors of PTP1B, we found that aqueous extracts of teas exhibited potent PTP1B inhibitory effects with an IC50 value of 0.4–4 g dry tea leaves per liter of water. Black tea shows the strongest inhibition activities, followed by oolong and then by green tea. Biochemical fractionations demonstrated that the major effective components in tea corresponded to oxidized polyphenolic compounds. This was further verified by the fact that tea catechins became potent inhibitors of PTP1B upon oxidation catalyzed by tyrosinases. When applied to cultured cells, tea extracts induced tyrosine phosphorylation of cellular proteins. Our study suggests that some beneficial effects of tea may be attributed to the inhibition of PTP1B.  相似文献   

20.
Protein tyrosine phosphatase inactivators are of interest as research tools and as therapeutic agents. In this study, the effect of sulfone analogue of naphthoquinone on the activities of PTP1B and other PTPs was examined. The results indicated that this compound selectively and irreversibly inactivated the PTP1B with the dissociation constant Ki of 3.5 microM and the inactivation rate constant kinact of 2.2 x 10(-2) sec-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号