首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Die operativ entfernten, sympathischen Halsganglien von Asthma- und Raynaud-Kranken, sowie von einigen Hingerichteten wurden auf die Mehrkernigkeit ihrer Ganglienzellen hin untersucht. Mehrkernige Ganglienzellen treten bei den genannten Krankheiten in den sympathischen Halsganglien in gehäuftem Maße auf. Von 755 mehrkernigen Ganglienzellen erweckten nur 108 hinsichtlich ihres morphologischen Bildes einen normalen Eindruck. Die übrigen zwei- und mehrkernigen Ganglienzellen, somit 86% aller untersuchten Zellen, wiesen vielgestaltige, pathologische Veränderungen an Kernen, Fibrillengerüst, Fortsätzen und Hüllgeweben auf. Eine Anzahl mehrkerniger Ganglienzellen zeigt eine besonders stark ausgeprägte Wucherungstendenz, die sich auf Zellumfang, Fortsätze und Hüllplasmodium erstreckt und als Zeichen eines degenerativen Wachstums aufzufassen ist.Die Fülle aller an den mehrkernigen Ganglienzellen auftretenden, morphologisch faßbaren, krankhaften Erscheinungen, jene häufige Verbindung von Mehrkernigkeit und Krankheit der Ganglienzelle lassen die Mehrkernigkeit bei der sympathischen Ganglienzelle als degeneratives Merkmal bewerten.  相似文献   

2.
Zusammenfassung An 47 operativ entfernten, unteren Halsganglien asthmakranker Patienten im Alter von 21–26 Jahren und an 14 oberen Halsganglien von 19 Hingerichteten im Alter von 17 1/2–70 Jahren wurden folgende Ergebnisse gewonnen:Ein an 223 mehrkernigen Ganglienzellen erhobener, histologischer Befund führt zur Annahme, in den mehrkernigen, sympathischen Ganglienzellen Erwachsener teils mit Sicherheit, teils mit Wahrscheinlichkeit Elemente mit minderwertiger oder krankhafter Funktion zu erblicken. Bei der Genese mehrkerniger Ganglienzellen kommt wahrscheinlich der Amitose eine gewisse Rolle zu.Die als Fortsatzdisharmonie bezeichnete Störung des Massenverhältnisses zwischen Zellkörper einerseits und Fortsätzen andererseits, darf als Zeichen einer krankhaften Erscheinung bei der sympathischen Ganglienzelle in Anspruch genommen werden.Die in ihrer Zahl schwankenden, scheinbar frei endigenden, kurzen Fortsätze der sympathischen Ganglienzellen im Grenzstrang sind als auswachsende neuroplasmatische Bildungen zu betrachten, die innerhalb des Hüllplasmodiums zu weiterem Wachstum und zur Differenzierung gelangen.An der Genese der in der vorliegenden Arbeit geschilderten, feinsten perizellulären Faserkörbe sind die Ganglienzelle und das umgebende Hüllplasmodium gemeinsam beteiligt. Eine Mitwirkung der kurzen Fortsätze der Ganglienzelle an der Bildung der Faserkörbe läßt sich sicher nachweisen, ein weiterer Zusammenhang der Faserkörbe mit der im Ganglion beobachteten, feinen Nervenfasermasse ist vorhanden, läßt aber hinsichtlich seiner Funktion keine klare Deutung zu.Die Herkunft des Untersuchungsmaterials von Asthmakranken und von einigen in ihrer Gesundheit zweifellos geschädigten Hingerichteten, die Wucherung des an der Genese der Faserkörbe sicher beteiligten Hüllplasmodiums, der stellenweise neuromähnliche Wachstumsmodus der Faserkörbe, ihr Zerfall und ihre häufige Verbindung mit minderwertigen oder degenerierenden Ganglienzellen legen den Gedanken nahe, in den feinen Faserkörben eine pathologische Erscheinungsform erkrankter Ganglienzellen zu sehen. Die beschriebenen Faserkörbe sympathischer Ganglienzellen wurden bis jetzt bei Asthma, Reynaud und Alkohol- und Nikotinabusus beobachtet.Der Halsgrenzstrang von Hingerichteten ist nicht ohne vorherige Kenntnis eines klinischen Befundes als normales Vergleichsmaterial zu verwenden.  相似文献   

3.
Zusammenfassung In sympathischen Ganglien findet sich als Hüllgewebe um die Ganglienzellen oder in Gestalt von Haufen und Strängen ein mit großen, hellen, rundlichen oder mit kleinen, dunklen, längsovalen Kernen ausgestattetes Plasmodium. Es ist mit den neurogenen Nebenzellen identisch.Dieses Nebenzellenplasmodium muß einen ziemlich lockeren Zusammenhang besitzen, da sich bei vielen Fixierungsmitteln kernhaltige Plasmateile loslösen und verschieden geformte Zellen vortäuschen können.Das Nebenzellenplasmodium stellt wahrscheinlich ein Gewebe sui generis dar. Es enthält spärliche Nissl-Granula und steht als Hüllplasmodium mit dem Neuroplasma der Ganglienzellen in engstem Zusammenhang.Vielleicht ist die Konstruktion des Nebenzellenplasmodiums einem retikulären Bau ähnlich; in seinen Gewebsspalten finden sich ein Netz feinster, kollagener Fasern und ein mit der Hortega-Methode darstellbares Fasernetz eingebettet. Beide Fasernetze entwickeln um die Ganglienzellen ein besonderes Hüllgewebe.Ob das mit der Hortega-Methode dargestellte Fasersystem zur Glia gehört, läßt sich nicht mit Bestimmtheit angeben.Das um die Ganglienzellen gelagerte Hüllplasmodium beherbergt in seinem Innern teils die pericellulären, nervösen Faserkörbe, teils die fibrillären Verbreiterungen der kurzen Fortsätze der Ganglienzellen und muß auch den durchtretenden Fortsätzen der Ganglienzellen Raum geben. Die sympathische Ganglienzelle bildet mit ihrem Hüllplasmodium eine morphologisch und wohl auch physiologisch untrennbare Einheit.Wahrscheinlich ist das Hüllplasmodium von Einfluß auf die Entwicklung der Fortsätze einer Ganglienzelle, da sich an den Stellen, wo das Hüllplasmodium stärker entwickelt ist, auch die Fortsätze in vermehrter Zahl beobachten lassen. Für die Anschauung spricht auch der Bau der von Cajal beschriebenen Glomerulos.Die im Innern des Nebenzellenplasmodiums vorkommenden Nervenelemente entbehren stets der Schwannschen Scheide.Im sympathischen Ganglion besteht somit ein untrennbarer plasmatischer Zusammenhang von neurofibrillärer Substanz und Nebenzellenplasmodium. Daher dürfte auch die Übertragung eines nervösen Reizes auf eine Ganglienzelle nicht ohne gleichzeitige Mitbeteiligung des Nebenzellenplasmodiums möglich sein.Im Hinblick auf neuere Arbeiten, in denen bei der Übertragung eines nervösen Reizes an Stelle der Synapsen einem chemischen Vorgang eine große Bedeutung zugeteilt wird, ist eine Mitbeteiligung des Nebenzellenplasmodiums an der Bildung bestimmter Reizstoffe denkbar.  相似文献   

4.
Zusammenfassung Es wurden mit der Bielschowsky-Methode die Ganglia nodosa von 150 Menschen aus allen Altersstufen untersucht.Beim Neugeborenen sind die Ganglienzellen klein und haben ein zartes, lockeres Fibrillenwerk. Endstadien von Zellteilungen kommen vor. Die Fortsätze sind dünn und fibrillenarm.Anastomosierende Nervenzellen treten im 1. Lebensjahr oft auf.Zweikernige Ganglienzellen sind im 1. Lebensjahr am häufigsten. Bei Säuglingen können bis zu 2% der Vaguszellen 2 Kerne besitzen.Die Höchstzahl gefensterter Nervenzellen, etwa 2%, tritt zwischen dem 2. und 4. Lebensjahr auf.Die Anzahl bipolarer Nervenzellen ist im 1. Jahrfünft am größten. Bis zum 6. Jahr können etwa 7% der Vaguszellen 2 Fortsätze aufweisen.Im 1. Jahrzehnt rücken fast alle Nervenzellen auseinander und haben ein eigenes Hüllplasmodium. Das Kaliber von Zelleib und Fortsatz nimmt zu. Bei der Hälfte der Ganglienzellen ist der Fortsatz in Windungen gelegt.Zwischen dem 10. und 20. Lebensjahr vermindert sich die Entwicklungsgeschwindigkeit der nervösen Substanz erheblich. Es treten überwiegend Ganglienzellen mittlerer Größe auf. Die Schlingenbildung der Fortsätze ist vermehrt.Im 3. Jahrzehnt beherbergen die Ganglien Nervenzellen aller Größenordnungen mit vollständig ausgebildetem Fibrillenwerk.Zwischen dem 20. und 30. Jahr treten an den Ganglienzellen erstmalig gestielte Protoplasmalappen auf.Die Multipolarität vereinzelter Nervenzellen im Ganglion nodosum ist wahrscheinlich der Ausdruck eines pathalogischen Reizzustandes der betreffenden Ganglienzellen.Im 4. und 5. Jahrzehnt macht die Entwicklung der Nervenzellen noch weitere Fortschritte. Die Hälfte der Ganglienzellen gehört zu den großen Elementen. Die Mehrzahl der Nervenzellen hat einen Fortsatz, der vielfache Windungen vollführt.Zwischen dem 50. und 70. Lebensjahr sind die meisten Ganglienzellen groß. Kleine Nervenzellen sind selten, mittelgroße kommen in geringer Anzahl vor.Nach dem 70. Lebensjahr sind atrophische Vorgänge an den Nervenzellen bemerkbar, die in einer Vergröberung des Fibrillennetzes ihren Ausdruck finden.Die Anzahl pigmentierter Nervenzellen, die schon bei Neugeborenen vorkommen, steigt bis zum 5. Jahrzehnt auf etwa 30% an und bleibt bis ins Greisenalter unverändert.Paraganglien wurden bei 58% der Fälle beobachtet.Eine Verschmelzung des Ganglion nodosum mit dem Ganglion cervicale craniale des Sympathikus kommt in 2% der Fälle vor.  相似文献   

5.
Zusammenfassung Die histologische Untersuchung des Auerbachschen Plexus aus der Wand eines resezierten Megacolon-Stückes ergibt mit Hilfe der Bielschowsky-Methode folgende Resultate:Schon bei schwacher Vergrößerung ist eine beträchtliche Auflockerung des Plexusgewebes in den Ganglien und Nervenbündeln festzustellen; sie hat hauptsächlich in schweren, degenerativen Veränderungen am Nervengewebe und am Schwannschen Leitplasmodium ihre Ursache. An Stelle der beiden zugrunde gegangenen Gewebsarten kann man Bindegewebe oder vakuolisierte Plasmareste vorfinden.An den weitaus meisten, großen Ganglienzellen sind erhebliche Veränderungen am Kern und Neuroplasma, wie Kernschrumpfung oder Kernfolähung mit folgendem Schwund der Kernsubstanz, ferner Verwaschenheit, Verklumpung und Defektbildung des Fibrillengerüstes, Zerfall der Fibrillen in Granula, Vakuolenbildung im Neuroplasma zu beobachten. Die Erscheinungen führen zum Auftreten zahlreicher Zelltrümmer oder zu Zellresten aller Art im Auerbachschen Plexus.An den Fortsätzen vieler, offenbar unter einer pathologischen Reizwirkung stehender Ganglienzellen macht sich ein Neubildungsprozeß in Gestalt regellos auswachsender, neurofibrillärer Substanz bemerkbar. Das neugebildete Nervengewebe geht mitsamt der Ganglienzelle zugrunde.An der Beseitigung der Reste nervöser Substanz scheinen, Hüllplasmodium und Schwannsches Leitgewebe vor allem beteiligt zu sein.In den Nervenbündeln kommt es zur Degeneration von Nervenfasern bei gleichzeitiger, häufig vakuoliger Umänderung des Schwannschen Leitgewebes.In dem, in der Ringmuskulatur des Colons gelegenen Plexus muscularis profundus sind ebenfalls schwere pathologische Erscheinungen an den Nervenfasern, Ganglienzellen und am Schwannschen Leitgewebe zu erkennen. Doch lassen sich auch Bündel überaus zarter, normal aussehender Nervenfäserchen beobachten.Die Entwicklung nervöser Bildunigen, die sensiblen Endapparaten ähnlich sehen, wird als eine pathologische Wachstumserscheinung an den Fortsätzen geblähter, dem Untergang geweihter Ganglienzellen klargestellt.  相似文献   

6.
Zusammenfassung Im Myokard können zwei Typen der Innervation beobachtet werden. In den Vorhöfen und den Papillarmuskeln bilden die feineren präterminalen Verzweigungen der Nerven ein von den Gefäßen unabhängiges Grundgeflecht. In der Kammermuskulatur lösen sich von den Gefäßen meist nur die intrasyncytialen Endverzweigungen (Grundplexus) der Nerven.Die intrasyncytialen Endverzweigungen der Herznerven degenerieren sekundär auf typische Weise nach Unterbrechung der zum Herzen führenden Nervenbahnen. Die Degeneration der imSchwannschen Leitgewebe befindlichen Nervenelemente spricht gegen die neueren Anschauungen über die angeblich syncytiale Natur der vegetativen Nerven, wenigstens was ihre Endausbreitung anbetrifft. Die Fortsätze der sympathischen Nervenzellen bleiben auch in demSchwannschen Syncytium unabhängige Axonen, die nach Abtrennung von ihrer Ursprungszelle unabhängig von den mit ihnen im gleichen Syncytium verlaufenden Fasern anderen Ursprunges einer sekundären Degeneration anheimfallen.Mit Hilfe der Degenerationsmethode können die Fasern verschiedenen Ursprunges auch in ihren letzten Verzweigungen voneinander differenziert werden. Es konnte erwiesen werden, daß sowohl die Fasern der beiderseitigen sympathischen cervicothoracalen Ganglien als auch die der zum Vagussystem gehörenden Herzganglien und die aus den Vagus- und den Intervertebralganglien der unteren Cervicalsegmente stammenden sensorischen Fasern in dem gleichenSchwannschen Syncytium unmittelbar nebeneinander verlaufen können. Somit wird die Bedeutung des kernhaltigen Endplexus (Grundplexus) als eines eigenen sympathischen oder vegetativen Endapparates hinfällig. DasSchwannsche Leitgewebe ist nichts weiter als die wahrscheinlich präterminale Hülle der Nervenfasern verschiedensten Ursprunges und verschiedener Funktion.Weitaus der größte Teil der Nerven des Myokards kommen aus den beiderseitigen Ganglia stellaria. Das linksseitige Ganglion versorgt vornehmlich die linke und hintere Fläche der Herzkammern und die Gegend der Herzspitze. Das rechtsseitige versorgt die vordere Fläche der Herzkammern, das Kammerseptum und den vorderen linken Papillarmuskel. Die Innervationsgebiete überdecken sich jedoch weitgehend.Die Fortsätze der intramuralen Ganglienzellen versorgen alle Teile des Herzens gleichmäßig. Ihre Fasern sind morphologisch nicht charakterisiert. Sensorische Fasern erhält das Myokard vor allem aus dem Nervus vagus und aus den unteren cervicalen Intervertebralganglien, die dem Herzen durch den Nervus vertebralis über das Ganglion stellare zugeführt werden. Die Fasern verschiedener Funktion und verschiedenen Ursprunges sind morphologisch nicht gekennzeichnet und nur durch Degenerations-untersuchungen voneinander zu isolieren.Nervenendigungen konnten im Myokard allerdings den Nervenfasern gegenüber in unverhältnismäßig geringer Zahl vorgefunden werden. Es sind zum Teil Seitenzweige der imSchwannschen Leitgewebe verlaufenden Nervenfasern.  相似文献   

7.
Zusammenfassung In den sympathischen, operativ entfernten Halsganglien von Patienten, die von Raynaudscher Krankheit und Asthma bronchiale befallen waren, werden knötchenartige Bildungen beschrieben. Sie verdanken ihre Genese einem regenerativ-hyperplastischen Wachstumsprozeß des Nervensystems und einem gleichzeitigen Wucherungsvorgang des Nebenzellenplasmodiums.Die erwähnten Knötchen, die gelegentlich eine starke Ähnlichkeit mit sensiblen Endorganen aufweisen, sind als pathologische Neubildung, somit als gemeinsame Reaktion von Nervengewebe und Hüllplasmodium auf einen krankhaften Reiz zu betrachten.Bei 25 Hingerichteten im Alter von 171/2–70 Jahren wurden die an vielen Nervenzellen vorkommenden perizellularen Faserkörbe im Ganglion nodosum genauer untersucht. Innerhalb des die Ganglienzellen umgebenden Hüllplasmodiums gelangen bei manchen Individuen sehr häufig, bei anderen Individuen ebenso selten, teils aus feinen, teils aus mittelstarken Nervenelementen bestehende Faserkörbe von manchmal enormer Dichte zu Gesicht.An der Genese der Faserkörbe sind die Ganglienzelle und das Hüllplasmodium gemeinsam beteiligt.Die vielfach beobachtete Wucherung des Hüllplasmodiums, der stellenweise neuromähnliche Wachstumsmodus der Faserkörbe, ihre gewöhnliche Verbindung mit degenerierenden Ganglienzellen, ihr häufigesAuftreten nach Nikotin- und Alkoholabusus und bei Asthmakranken lassen die Faserkörbe mit größter Wahrscheinlichkeit als eine pathologische Erscheinungsform betrachten.Bei dem Auflösungsprozeß einer degenerierenden Ganglienzelle ist dem umgebenden Hüllplasmodium eine gewisse Rolle zuzuweisen.Eine starke, innerhalb des Hüllplasmodiums zur Entwicklung gelangende Schlingenbildung des Fortsatzes einer Ganglienzelle kann unter Umständen als ein Anzeichen degenerativen Geschehens gewertet werden.Nach den bisherigen Beobachtungen scheinen pathologische Veränderungen im Ganglion nodosum mit gleichzeitig auftretenden krankhaften Erscheinungen im Ganglion cervicale craniale desselben Patienten hinsichtlich ihrer Entwicklung ungefähr gleichen Schritt zu halten.  相似文献   

8.
Zusammenfassung Wir halten an unserer Auffassung der Synapsen im Sympathikus im Sinne einer elektrischen Maschennetzschaltung bzw. eines Rückkoppelungssystems mit Kondensator, Widerstand und Detektor fest. Diese Vorstellung ist sowohl mit den komplizierten morphologischen Strukturen, als auch den neueren physiologischen Ergebnissen über die vorwiegend elektrische Natur der Erregung und Leitung in den Ganglien in Übereinstimmung (Lorente de Nó, Prosser, Govaerts).Die Synapsen liegen an den Stellen der in verschiedenen Formen auftretenden, um die Ganglienzellen liegenden Endapparate, wo sie direkten Kontakt mit der Zelloberfläche haben. Man hat sich das daher nicht nur an einer kleinen umschriebenen Stelle, sondern auch auf einer größeren Strecke und an verschiedenen Punkten zugleich vorzustellen.Die Synapsen sind ebenso wie alle an die Zellen herantretenden oder aus ihr heraustretenden Nervenfasern in eine Isoliermasse, das Scheidenplasmodium (Stöhr) eingebettet, das physiologisch auch noch StoffWechselfunktionen dient, die wir im einzelnen noch nicht kennen, das jedoch kein Acetylcholin produziert (Lorente de Nó).Die Stöhrsche Auffassung vom Terminalretikulum als einem feinsten nervösen Netzwerk, das Ganglienzellen und Nervenfasern in gleicher Weise schleierartig einhüllt, das Scheidenplasmodium innerviert und auf diese Weise sowohl Ganglienzellen als Scheidenzellen nervöse Impulse zuteilt, läßt sich in keiner Weise mit den neueren physiologischen Vorstellungen vorwiegend elektrischer Erregungsprozesse zur Deckung bringen. Danach ist das Terminalretikulum physiologisch ein Absurdum, da dadurch weder eine Erregungsleitung, noch differente, selektionierte Reize möglich sind. Die Existenz des nervösen Terminalretikulums wird von den meisten Forschern in Frage gestellt.Das Scheidenplasmodium ist ektodermaler Abstammung und umfaßt ebenso die sogenannten Kapselzellen, als auch die die Fortsätze und Nervenfasern umscheidenden Zellen, ist also identisch mit den Schwannschen Zellen (Koelliker, Kohn).Sogenannte neurogene Nebenzellen (Kohn) spielen im Sympathikus des Erwachsenen keine wesentliche Rolle, da sie, wenn überhaupt, immer nur vereinzelt vorkommen. Es ist in keiner Weise berechtigt, nach Stöhr diese zusammen mit den Scheidenzellen als Nebenzellenplasmodium zu bezeichnen und es als Gewebe sui generis zu betrachten.Eine Innervation des Scheidenplasmodiums widerspricht absolut den morphologischen und physiologischen Tatsachen, dagegen liegen in ihm stets die Zellfortsätze und Endapparate (Isolation und Stoffwechsel). Ein Kapselraum existiert um die lebende Nervenzelle offenbar nicht (Szantroch).Die Kernform der Scheidenzellen ist wechselnd, was weitgehend von funktionellen Zuständen und mechanischen Faktoren abhängt.Das Eindringen von Scheidenplasmodium in das Neuroplasma der Ganglienzellen ist beim Menschen absolut unbewiesen, und damit auch eine Verzahnung (Stöhr), außerdem aber würde es der physiologisch-elektrischen Vorstellung der Erregung und Leitung völlig widersprechen.Als äußere Hülle der sympathischen Ganglienzellen figuriert eine außen aus gröberen, innen aus feinsten netzförmigen Bindegewebsfasern bestehende Kapsel.Ein exakter Beweis gegen den individuellen Zellcharakter der Ganglienzellen, die vielfach in Gruppen zusammenwirken, ist bisher nicht erbracht und daher die Neuronentheorie, wenn auch nicht mehr in ihrer starren Form, durchaus noch gültig und vor allem durch die neueren physiologischen Ergebnisse fest gestützt.  相似文献   

9.
Zusammenfassung Am Auerbachschen Plexus im Darm bei Katze und Kaninchen läßt sich ein Maschenwerk erster und zweiter Ordnung, sowie ein feines der Ringmuskelschicht direkt aufliegendes Tertiärgeflecht unterscheiden. In den Nervenbündeln aller drei Geflechte finden sich reichlich Schwannsche Kerne vor.Die Ganglienzellen des Auerbachschen Plexus befinden sich hauptsächlich im Maschenwerk erster Ordnung, kommen aber auch noch vereinzelt in den Maschen des Sekundärgeflechts vor. Es lassen sich an den Ganglienzellen zwei verschieden gebaute Zelltypen im Sinne Dogiels unterscheiden. Typus 2 wird durch multipolare Zellen repräsentiert, deren zwei bis sechs lange Fortsätze sich meist dichotomisch aufteilen und Neurit und Dendriten nicht unterscheiden lassen. Die Endigungsweise der Fortsätze war nicht feststellbar. Über die Funktion des Zelltypus 2 lassen sich keine bestimmten Angaben beisteuern.Der Zelltypus 1 ist gewöhnlich durch einen einzigen langen Fortsatz und zahlreiche, sich häufig verästelnde kurze Fortsätze ausgezeichnet. Gelegentlich kommen auch zwei lange, an den entgegengesetzten Polen der Zelle entspringende Fortsätze zu Gesicht. Die kurzen Fortsätze endigen mit ungeheuer feinen fibrillären Verbreiterungen, welche, ähnlich einem periterminalen Netzwerk, manchmal in das Plasma der glatten Muskelfasern oder in das Endothel der Kapillaren hinein versenkt sind.Mit der Nisslmethode läßt sich in den Ganglienzellen des Auerbachschen Plexus eine sehr feine Tigroidsubstanz darstellen; sie erscheint bei der Katze kleinschollig, beim Kaninchen diffus verteilt.Der Meissnersche Plexus submucosus besteht aus mehreren, verschieden gebauten, etagenartig übereinander geschichteten Nervengeflechten. Am weitesten peripher, also direkt an die Ringmuskelschicht grenzend, liegt der Plexus entericus internus (Henle). Die übrigen in der Submukosa befindlichen Geflechte bilden den Plexus submucosus im engeren Sinne. Der Plexus entericus internus weist in der Konstruktion eine beträchtliche Ähnlichkeit mit dem Auerbachschen Geflecht auf; nur sind seine Nervenbündel schmäler, seine Maschen kleiner und unregelmäßiger und die Anhäufungen der Ganglienzellen in geringerem Umfang ausgebildet als im Auerbachschen Plexus.Im Meissnerschen Plexus des Dünndarmes von Katze und Kaninchen lassen sich ebenfalls zwei Arten von Ganglienzellen unterscheiden: Typus 1 mit vielen kurzen und einem oder zwei langen Fortsätzen; Typus 2 mit ungefähr zwei bis fünf langen Fortsätzen (Katze) oder mit sieben und mehr langen Fortsätzen (Kaninchen).Die Ganglienzellen des Auerbachschen Plexus sind meistens in einen dichten Filz feinster Nervenfäserchen eingehüllt, welche in ihrer Gesamtheit jedoch nicht als Endkorb zu betrachten sind. Gelegentlich dringt eine allerfeinste Terminalfaser in das Innere einer Ganglienzelle ein. Anastomotische, plasmatische Verbindungen zwischen benachbarten Ganglienzellen vom Typus 1 kommen sicher vor; benachbarte Ganglienzellen vom Typus 2 zeigen niemals anastomotische Verbindungen ihrer Fortsätze.Der Auerbachsche Plexus des Menschen unterscheidet sich in Größe und Gestaltung seiner Maschen von demjenigen der Katze und des Kaninchens. Er läßt ein Primär- und Sekundärgeflecht erkennen. Der Meissnersche Plexus submucosus besteht aus mehreren etagenförmig übereinander gelagerten Geflechten; am weitesten peripher liegt der Plexus entericus internus (Henle), der durch die Feinheit seiner Bündel und Ganglien und durch die Unregelmäßigkeit in der Größe und Anordnung seiner Maschen von der Konstruktion des Auerbachschen Plexus erheblich abweicht. Die Geflechte des Plexus submucosus im engeren Sinne nehmen, je näher sie der Muscularis mucosae liegen, an Feinheit ihrer Maschen und Bauelemente zu.Das Tertiärgeflecht des Auerbachschen Plexus bei Kaninchen und Katze ist durch eine außerordentliche Feinheit seiner Fäserchen ausgezeichnet; letztere sind in das Schwannsche synzytiale Leitgewebe eingebettet und dringen allmählich in die Ringmuskelschicht ein.Die interstitiellen Zellen sind mit den Schwannschen Zellen, Lemnoblasten, Leitzellen, peripheren Neuroblasten der Autoren identisch. Sie bilden das Leitgewebe oder Schwannsche Synzytium und können verschiedener Abkunft sein. Man kann — physiologisch gedacht — das Schwannsche Leitgewebe gemeinsam mit den in seinem Plasma eingebetteten Nervenfäserchen als ein nervöses terminales Plasmodium bezeichnen.Das nervöse terminale Plasmodium ist sehr schön in der Tunica propria der Darmzotten zu beobachten.In der Ringmuskelschicht findet sich ebenfalls das Schwannsche nervöse Synzytium vor. Einzeln verlaufende, feinste Nervenfäserchen mit kleinen fibrillären Netzchen wurden teils zwischen, teils innerhalb (?) der glatten Muskelfasern beobachtet. Eine eigentliche intraprotoplasmatische Endigung in der glatten Muskulatur ließ sich nicht finden. Auch in der Ringmuskelschicht wurden Ganglienzellen bemerkt.Außer den gewöhnlichen Kapillarbegleitnerven konnten mehrmals direkte Beziehungen zwischen der Kapillarwand einerseits und dem Fortsatz einer Ganglienzelle und Nervenfasern andererseits nachgewiesen werden.Die Submukosa des menschlichen Magens zeigt im Pylorusabschnitt eine außerordentlich reichliche Innervation. Die Maschen des Plexus submucosus sind sehr unregelmäßig; es kommen ferner unipolare, bipolare und multipolare Ganglienzellen von jeder erdenklichen Größe vor.In der Schleimhaut des Pylorus und in der Regio praepyloric a des menschlichen Magens lassen sich in der Submukosa eigentümliche, gewundene Nervenfasern beobachten, die in einem besonderen synzytialen Leitplasmodium einherziehen. An zirkumskripten Stellen von sehr verschiedener Ausdehnung können die Nervenfasern durch eine mannigfache Anhäufung zahlreicher Windungen nervöse Schlingenterritorien entstehen lassen.In einem gewundenen plasmatischen Leitstrang können mehrere Nervenfasern verschiedenen Kalibers verlaufen. Ein Teil dieser Nervenfasern nimmt von unipolaren, in der Submukosa befindlichen Ganglienzellen seinen Ursprung. Im übrigen finden sich in der Pylorusregion des menschlichen Magens reichlich Ganglienzellen, sowohl vereinzelt, wie in kleinen Ganglien angehäuft, vor.Vielleicht bilden die gefundenen Schlingenterritorien ein einheitliches nervöses Überwachungssystem für die Tätigkeit der Pylorusmuskulatur. Möglicherweise spielen sie auch bei der Entstehung des Magengeschwürs eine Rolle.Die Untersuchungen wurden mit Unterstützung der Deutschen Forschungsgemeinschaft ausgeführt.  相似文献   

10.
Zusammenfassung Die sehr zahlreichen Nervenfasern für die Thymus der Sauropsiden gehen hauptsächlich vom zervikalen sympathischen Strang, aber zum Teil auch vom Vagus und vielleicht von den ventralen Ästen der zervikalen Nerven aus und erreichen die Thymus, indem sie den Gefäßen entlang laufen.Die Faserbündelchen, in welchen man oft isolierte oder in Gruppen gesammelte sympathische Zellen antrifft, dringen in das Thymusparenchym ein und hier verästeln sie sich sehr stark. Ein kleiner Teil der Nervenfasern sind Vasomotoren, ein anderer ebenfalls kleiner Teil verschwindet innerhalb von Gruppen von epithelioiden Zellen, welche oft mit drüsenähnlichen Höhlungen versehen sind (einige von diesen epithelioiden Anhäufungen erinnern im Aussehen an dieHassall-Körperchen der Säugetiere); echte typische H. K. sind sehr selten in erwachsenen Tieren nachweisbar.Der größte Teil der Nervenfasern erreicht jedoch die myoiden Zellen und verbindet sich mit denselben. Bei Cheloniern und bei Hühnern ist der Nervenanteil, der den myoiden Elementen vorbehalten ist, wirklich übermäßig groß.Die myoiden Zellen sind bekanntlich ein oft sehr ansehnlicher Bestandteil der Thymus der Sauropsiden, wie bei anderen Wirbeltiergruppen. Sie sind regressiven und progressiven Veränderungen unterworfen: je nach den Jahreszeiten (Dustin), ebenso besonderen funktionellen Bedingungen wie Fasten, Winterschlaf (Hammar); sie zeigen beim Huhn eine Hyperplasie-Hypertrophie als Folge der Kastration und des Alters (Terni).In vorliegenden Untersuchungen sind nebenbei einige neue Tatsachen über die Morphologie der myoiden Zellen festgestellt worden, unter anderen folgende: a) ihre histologische Differenzierung während der Entwicklung tritt sehr spät ein; b) sie sind räumlich von dem retikulär-kollagenen Netze des Thymusläppchens unabhängig, und sie besitzen keine retikulosarkolemmale Membran; c) die strahlenförmige (konzentrische) oder regellose Anordnung der Querstreifung der Myofibrillen in den großen myoiden Elementen bildet sich als Resultat der Verschmelzung von vorher unabhängigen Zellen (weshalb die besprochenen Elemente echte Syncytien sind); d) im Protoplasma der myoiden Zellen finden sich Spuren von Glykogen; usw.Die Verbindungen zwischen Nervenfasern und myoiden Elementen und andere Einzelheiten der feineren Verteilung der Nervenelemente im Thymusläppchen wurden bei Cheloniern und Vögeln besonders eingehend untersucht. An der Oberfläche der myoiden Zellen bilden die Nervenfasern Windungen oder spatel-, knopf-, keulchen- oder füßchenförmige Verbreitungen, welche der myoiden Substanz anhängen (neuromyoide Verbindungen).Die Nervenfasern, welche sich durch diese Endigungsweise mit den myoiden Zellen verbinden, gehören sehr wahrscheinlich zu den postganglionären Neuronen, welche entweder im Thymus (intraparenchymale oder perivasale mikroskopische Ganglien) oder im zervikalen sympathischen Gefäßgeflecht oder im sympathischen Grenzstrang liegen.Über Wesen, Zweck und Ziel der Vagusfibern habe ich mir kein bestimmtes Urteil bilden können.Außerdem befinden sich im Thymusläppchen wenige Nervenzellen des gewöhnlichen sympathischen Typus und in größerer Zahl kleine isolierte Nervenzellen, die zweifellos mit den interstiziellen ZellenCajals zu identifizieren sind. Diese interstiziellen Neuronen befinden sich meistensin der Nähe der myoiden Zellen und liegen oft auf der Oberfläche derselben, indem sie sie mit ihren verästelten Fortsätzen umfassen. Manchmal verbindet sich ein langer und feiner Fortsatz der interstiziellen Neuronen mit einer entfernt gelegenen myoiden Zelle. Diese Nervenzellen müssen zum größten Teil alsautonome effektorische Neurone aufgefaßt werden, wegen ihrer innigen Verbindung mit der kontraktilen Substanz. Wenn eine Kontraktionsmöglichkeit der myoiden Zellen auch nicht in Abrede zu stellen ist, ist es nicht recht verständlich, was für eine nützliche Wirkung ihre Kontraktion haben könnte (darum gebrauchen wir den Ausdruck effektorisch und nicht motorisch).Man kann oft beobachten, daß an der Oberfläche einer und derselben myoiden Zelle sich sowohl Fäden von exogenen Nervenfasern, als auch verästelte Fortsätze einer kleinen interstiziellen paramyoiden Zelle ausbreiten.Obwohl in der Thymus (wie auch im Darm;Cajal) das Wesen der Fortsätze der interstiziellen Neuronen zweifelhaft ist, mangels sicherer differentialer Merkmale zwischen Neuriten und Dendriten, ist doch das Aussehen der mit den myoiden Zellen verbundenen Fasern ganz verschieden von demjenigen der Fortsätze der interstiziellen Zellen.In einigen wenigen Fällen ist es möglich, einen dünnen und langen Fortsatz (Neurit?) der interstiziellen Zelle zu verfolgen, welcher ein kleines Blutgefäß erreicht; es ist möglich, daß er längs desselben eine proximale Richtung verfolgt. Dieses Verhalten läßt die Vermutung zu, daß wenigstens einigen dieser Neuronen die Bedeutung vonrezeptorischen Neuronen zuzuschreiben sei.Die Deutung des reichen Zuflusses und der ansehnlichen Verteilung des nervösen Anteils im Thymusparenchym der Sauropsiden ist, vom Gesichtspunkt ihrer möglicherweise endokrinen Funktion, nicht leicht: Sei es, weil die Innervation anderer endokriner Drüsen histologisch nicht genau bekannt ist (mit Ausnahme der Paraganglien); sei es, weil es überhaupt zweifelhaft ist, ob die Thymus eine innere Sekretion besitzt.Es ist möglich, daß die Anwesenheit der neuromyoiden Synapsen in der Thymus (welche hier zum ersten Male hervorgehoben wird), wenn auch die myoiden Zellen nicht kontraktionsfähig sein sollten, trotzdem mit dem Kohlenhydratenstoffwechsel in Zusammenhang steht, ähnlich wie es für die neuromuskularen Synapsen des zerebrospinalen Systems angenommen wird (Roncato).Der beinahe übergroße Reichtum nervöser Verzweigungen und neuromyoider Verbindungen, besonders bei Cheloniern, legt die Vermutung nahe, daß in zyklischen degenerativen Vorgängen des Thymusparenchyms eine Zerstörung und nachfolgende übermäßige Regeneration von Nervenfasern stattfindet; andererseits läßt die Zunahme der Zahl und Verzweigung der Nervenfasern im Kapaun und alten Hahn (Terni) die begründete Vermutung zu, daß es sympathische Neuronen gibt, welche einer auch verspäteten progressiven histologischen Differenzierung ihrer Neuriten fähig sind (eine verspätete histologische Vervollkommnung des Zellenleibes und der Dendriten in sympathischen Neuronen ist schon in menschlichen Ganglien bekannt;Terni).Aus diesen Gründen lassen die voliegenden Beobachtungen über die Thymus der Sauropsiden den Gedanken aufkommen, daß die stark entwickelte autonome Innervation der Thymus in der Funktion dieses Organs eine bedeutende Rolle spielt: sei es als Sitz besonderer Reize, welche sich wahrscheinlich in den neuromyoiden Apparaten entladen, sei es, weil die Nervenfasern mit Vorrichtungen versehen sind, welche auf lokale oder allgemeine Reize mit besonderer Empfindlichkeit morphologisch reagieren.  相似文献   

11.
Ludwik Monnè 《Protoplasma》1938,30(1):582-591
Zusammenfassung Es wird versucht, die Strukturveränderungen der Spermatocyten und Spermatiden vonHelix, welche sich unter der Einwirkung verschiedener hypo- und isotonischer Salzlösungen einstellen, physikalisch-chemisch zu erklären. In destilliertem Wasser blähen sich die Mitochondrien stark auf, während der Golgi-Apparat fast unverändert bleibt. Dagegen bleiben in isotonischen NH4Cl- und in ammoniakhaltigen isotonischen NaCl-Lösungen die Mitochondrien unverändert, während der Golgi-Apparat sehr bald einer starken strukturellen Veränderung unterliegt. Die Gestaltveränderung des Golgi-Apparates kommt durch Verflüssigung seiner Substanz zustande, was durch Wasseraufnahme ermöglicht wird. Offenbar wird der Golgi-Apparat erst dann zur stärkeren Wasseraufnahme fähig, wenn seine Lipoid-Eiweiß-Verbindungen durch Ammoniak zum Teil aufgespalten werden. Die inHelix- Spermatiden experimentell hervorgerufenen strukturellen Veränderungen des Golgi-Apparates sind den normalen physiologischen Strukturveränderungen derselben Plasmakomponente in Insekten-Spermatiden sehr ähnlich. In Spermatiden lösen sich von den Hüllen der Golgi-Apparat-Elemente ihre Binnenkörper los und verschmelzen miteinander zu einer großen Kugel, welche in das Cytoplasma ausgestoßen wird. Dies ist einer Akrosombildung sehr ähnlich. Diese Strukturveränderungen sind zwar vital aber irreversibel. Bei langdauernder Einwirkung von NH4Cl und NaHCO3 bilden sich, schon nekrobiotisch, strang- und fibrillenförmige Myelinfiguren. Die letzteren entstehen aus dem Grundcytoplasma und bilden Knäuel, welche sich zu großen Kugeln verflüssigen. Auf der Zelloberfläche entstehen geißeiförmige Fortsätze, welche auch als Myelinfiguren gedeutet werden.  相似文献   

12.
Zusammenfassung Mit Hilfe der Silberimprägnationen nach Bielschowsky, Feyrter und Jabonero konnten im Zwischenhirn des Hundes die Nervenzellen der Nodulusfasern gefunden werden. Es handelt sich um multipolare, granulierte Nervenzellen, die sich schwach grau, bald intensiv schwarz imprägnieren lassen. Im Auftreten der verschieden großen und im Zelleib unterschiedlich verteilten Granula wird ein jeweils besonderer Funktionszustand der Zellen gesehen. Die Fortsätze der im Grau der seitlichen und vorderen Wand des 3. Ventrikels vornehmlich in der Regio suprachiasmatis gelegenen Nervenzellen gehen mit ihren Fortsätzen kontinuierlich in Nodulusfasern über. Auf Grund morphologischer Befunde könnte es sich bei den Zellen und Nodulusfasern neben den mit der Gomorifärbung darstellbaren sekretorischen Ganglienzellen des N. supraopticus und N. paraventricularis und ihren Fortsätzen (Bargmann 1954) um ein zweites sekretorisch tätiges System handeln, dessen Affinität zu Silbersalzen hervorzuheben ist.Die Plasmaausläufer der granulierten, multipolaren Ganglienzellen erreichen als Nodulusfasern die Zona externa des Infundibulums, dringen mit einigen dicken Infundibularnerven in die Pars infundibularis der Adenohypophyse ein und nehmen engen Kontakt zu den dortigen Gefäßen und zum Drüsengewebe auf. Nodulusfasern finden sich weiter an den Blutgefäßen der Neurohypophyse und im Grenzgebiet der Pars intermedia.In den Retinae von Rind, Hund und Kaninchen konnten ebenfalls Nodulusfasern nachgewiesen werden, die in Bau und imprägnatorischem Verhalten den Knötchenfasern des Hypothalamus entsprechen. In der Netzhaut erstrecken sich die Nodulusfasern in großer Zahl innerhalb der inneren retikulären Schicht, an den kleinen Blutgefäßen und stellenweise in Umgebung kleiner multipolarer Nervenzellen des III. Neurons.  相似文献   

13.
Zusammenfassung In einem Fall von Appendicitis wird bei intaktem Epithel, bei intakter Serosa und bei nur geringfügiger, lymphocytärer Infiltration eine Veränderung am intramiuralen Nervensystem in der Schleimhaut beschrieben.Es handelt sich um eine Faserhyperplasie des Meissnerschen Plexus und um eine neuromatöse Wucherung des Terminalreticulums in der Tunica propria.Mit dieser Neuromatose sind Veränderungen an der Muscularis mucosae, an dem Bindegewebe der Tunica propria und an den Gefäßen verknüpft.Der Befund ist wahrscheinlich als eine pathologische Reaktion des vegetativen Nervensystems auf einen anormalen Reiz zu betrachten. Offenbar ist bei der vorliegenden Erkrankung dem aus dem Gleichgewicht gebrachten, vegetativen Nervensystem eine bedeutsame Rolle zuzuschreiben.Wie die mannigfach auftretenden perizellulären Faserkörbe an den vegetativen Ganglienzellen, so dürfte auch das nervöse Terminalreticulum im Endausbreitungsgebiet des vegetativen Nervensystems während des lebendigen Geschehens wahrscheinlich dauernden Veränderungen unterliegen.  相似文献   

14.
Zusammenfassung Die zur Gallenblase laufenden Nerven treten zusammen mit den größeren Gefäßen an das Organ heran. Sie formen in der Adventitia der Gallenblase neben einem aus größeren sowie kleineren Bündeln bestehenden Haupt- oder Grundgeflecht einen maschenartigen Plexus, der eine gewisse Ähnlichkeit mit demAuerbachschen Plexus des Darmes zeigt. Beide Nervenformationen stehen miteinander durch kleinere Faserbündel in Zusammenhang, von denen sich die feinen Nervengeflechte und terminalen Netze für die Adventitia absondern.In der Muskularis finden sich ebenfalls maschenartige Nervenbildungen vor, die ähnlich dem in der Adventitia geschilderten Plexus gebaut sind. Von diesen Nervenstämmen stammen die feineren Nervenelemente ab, die die Muskulatur versorgen. Es finden sich zwischen den Muskelzellen Geflechte verschiedenster Anordnung und feinste Nervenfasernetze unter Bildung der bekanntenRemakschen Knotenpunkte vor.Die Nerven der Mucosa ordnen sich wieder in stärkeren bis zu kleinsten Stämmchen zu Geflechten, die jedoch mehr Unregelmäßigkeit zeigen. Die Endnetze in der Mucosa steigen hoch in die Schleimhautfalten bis dicht unter das Epithel hinein. Sie legen sich oft dicht an die Basalmembran an. Intraepitheliale Fasern kommen nicht zu Gesicht.Ganglienzellen kommen in allen Wandschichten der Gallenblase vor. Die größeren Ganglienzellhaufen liegen in den Ecken der Maschen der einzelnen Plexus. Auch einzeln an und in den Nervenbündeln liegende Ganglienzellen sind zu beobachten. Es sind Ganglienzellen sowohl vom ersten TypusDogiels, wie solche vom zweiten Typus. Die Zellen vom zweiten Typus zeigen keine Besonderheiten, während die Ganglienzellen des ersten Typus untereinander Anastomosen mittels ihrer kurzen Fortsätze eingehen können. An den kurzen Fortsätzen waren in einigen Fällen die fibrillären Verbreiterungen vorhanden.Überall werden zahlreiche motorische Fasern abgegeben, die in der Adventitia und auf der Media der Gefäße Geflechte bilden.Die Nerven aller Wandschichten der Gallenblase stehen miteinander in inniger Verbindung.Sie bilden ein geschlossenes nervöses Syncytium, das aus den rein nervösen Elementen und einem diese umschlieenden kernhaltigen Leitplasma besteht.Auf die Funktionen der Nerven, wie auf die Beteiligung der beiden antagonistischen Systeme Vagus und Sympathicus sind aus den mikroskopischen Präparaten keine Schlüsse zu ziehen. Es muß auf das Experiment verwiesen werden.  相似文献   

15.
Zusammenfassung Die Untersuchungen wurden im Rahmen neuroethologischer Arbeiten am Oberschlundganglion von Calopteryx splendens (Odonata) durchgeführt. Sie bilden die Voraussetzung für eine integrierende Synthese morphologischer und ethologischer Kenntnisse, auf Grund dessen wir etwas über die Informationsstruktur des Zentralnervensystems erfahren können.Die an den beiden letzten Larvenstadien beschriebenen Analysen nach Ganzkopfbestrahlungen betreffen Spätschäden.Nach morphologischen Gesichtspunkten werden vier Neuronenperikaryen unterschieden: 1. Globuliperikaryon. 2. Großes Perikaryon mit großem rundlichem Kern. 3. Großes cytoplasmareiches Perikaryon mit gelapptem Kern. 4. Perikaryon mit neurosekretorischer Tätigkeit. Außer gemeinsamen Abweichungen von der Norm weist jeder Perikaryontyp während des Spätschadens charakteristische morphologische Veränderungen auf. Es ist anzunehmen, daß diese zelltypischen Unterschiede der Erscheinungsbilder auch solchen in der Funktion entsprechen.Bei den Globuliperikaryen (besonders bei denjenigen, die im Zellverband der Corpora pedunculata liegen), den großen cytoplasmareichen Perikaryen mit gelappten Kernen und den sekretorisch tätigen Neuronenkörpern nehmen die Volumina des Neuroplasmas unter gleichzeitigem Sinken der Kerngröße zu. Eine Ausnahme hiervon bilden die großen Perikaryen mit großem rundlichem Kern. Bei ihnen allein wird auch der Nukleolus im Karyoplasma deutlich sichtbar. Für alle vier Perikaryen sind während des Spätschadens mehr oder weniger starke Chromatinkonzentrationen kennzeichnend. Hinsichtlich der Veränderungen neuroplasmatischer Einschlüsse ähneln sich einerseits die Globuliperikaryen und die großen cytoplasmareichen Perikaryen mit gelappten Kernen, andererseits die großen Perikaryen mit rundlichen Kernen und diejenigen mit neurosekretorischer Tätigkeit. Die Unterschiede beider Gruppen beziehen sich vor allem auf Strukturen des mit Ribosomen besetzten endoplasmatischen Reticulums, die Dictyosomen und Mitochondrien. Besonders auffallend sind die in den großen Perikaryen mit großen rundlichen Kernen auftretenden, tief schwarzen Granula, die vielfach den Eindruck von Ribosomenkonzentrationen erwecken. Die Sekrettropfen der neurosekretorischen Perikaryen sind während des Spätschadens insgesamt reduziert und verklumpen infolge von Membranverlusten untereinander.Im Gegensatz zu den Ergebnissen lichtmikroskopischer Untersuchungen sind Veränderungen im Neuropilem während des Spätschadens gut darstellbar. Einschlüsse der Axone und Gliafortsätze werden beschrieben und mit den Befunden anderer Autoren verglichen. Nach Bestrahlungen sind die axoplasmatischen Einschlüsse stark reduziert. Dies bezieht sich besonders auf die praesynaptischen Bereiche, die infolge Rückbildung der synaptischen Bläschen und der mit ihnen auftretenden Granula weitgehend leer erscheinen. Außerdem ist die Struktur der Mitochondrien, besonders ihrer Cristae, gestört. Es ist anzunehmen, daß es sich hierbei um irreversible funktionelle Störungen handelt. Larven, die nach Beendigung der Latenzzeit solche histopathologischen Merkmale aufweisen, zeigen auch ethologisch keine Remission mehr.Herrn Prof. Dr. Friedrich Seidel in Verehrung und Dankbarkeit gewidmet.Herrn Dr. Wolrad Vogell, Leiter des Laboratoriums für Elektronenmikroskopie der Universität Marburg a.d. Lahn, möchte ich für die Erlaubnis zur Anfertigung der Aufnahmen und für seine eingehende Beratung besonders herzlich danken. Dem Leiter der Forschungsgruppe Elektronenmikroskopie der Deutschen Forschungsanstalt für Psychiatrie des Max-Planck-Instituts München, Herrn Dr. Dr. Hermann Hager, danke ich sehr für die wertvollen Hinweise zu dieser Arbeit, Fräulein Barbara Schüler (Elektronenmikroskopisches Laboratorium, Marburg) für die Anfertigung der Aufnahmen.  相似文献   

16.
Zusammenfassung Nach Untersuchungen zahlreicher oberer sympathischer Halsganglien von Mensch und Tier läßt sich der Bau der interneuronalen Synapse folgendermaßen darstellen: am Perikaryon, an den Fortsätzen der sympathischen Nervenzellen und im Bereich der Hüllzellen wurden ring- und kolbenartige Endigungen beobachtet. Auf Durchschneidung des präganglionären Nervenstammes reagieren die erwähnten Endringe mit einer Vergrößerung und gesteigerten Affinität der Endringe und Kolben zu Silbersalzen. Daher sind die ring- und kolbenförmigen Endapparate als das Ende präganglionärer Nervenfasern zu betrachten.Die von zahlreichen Autoren und mir in sympathischen Ganglien des Menschen nachgewiesenen Endkolben und Endringe sind ebenfalls als Synapsen anzusehen. Ihr häufiges Auftreten in erkrankten Ganglien wird auf eine durch einen Reizzustand hervorgerufene erhöhte Argentophilie zurückgeführt.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

17.
Zusammenfassung Zwischen die Drüsen des Magens findet sich ein engmaschiges, synzytiales Netz kernhaltiger, feinster Plasmastränge eingeschoben. Es tritt mit den Drüsen in vielfachen plasmatischen Zusammenhang und dürfte als nervöser Endapparat zu betrachten sein, dem die Übertragung nervöser Impulse auf das Drüsengewebe zukommt.Um viele Ganglienzellen des Auerbachschen Plexus findet sich ein teilweise kernhaltiges, nervöses Netzwerk vor, das mit zarten Plasmasträngen direkt in das die glatte Muskulatur versorgende Terminalretikulum übergeht. Feinste Nervenelemente des Netzwerkes liegen entweder der Oberfläche der Ganglienzelle in plasmatischem Zusammenhang auf oder gehen direkt in das intrazelluläre Fibrillensystem der Ganglienzellen über.Benachbarte Ganglienzellen können durch die fibrillären Verbreiterungen ihrer kurzen Fortsätze häufig in kontinuierlichem, neuroplasmatischem Zusammenhang stehen.Ein gleichgebautes, nervöses Terminalretikulum umfaßt Ganglienzellen, Blutgefäße, Drüsen und glatte Muskelfasern. Da sich innerhalb desselben nirgends freie Nervenenden so wenig wie an den Fortsätzen der sympathischen Ganglienzellen vorfanden, so weist seine Existenz auf einen synzytialen Bau des vegetativen Nervensystems hin. Es finden sich keine morphologischen Anhaltspunkte vor, an der Neuronentheorie im Sinne der Cajalschen Formulierung weiterhin festzuhalten.Zwei Arbeiten von Michels und Nonidez werden an Hand geeigneter Abbildungen über die Gefäßinnervation dahin ergänzt, daß die Technik der genannten Autoren unzureichend ist und ihre Angabe, daß das nervöse Terminalretikulum bindegewebiger Natur sei, eine vollkommen unbewiesene Behauptung darstellt.In der Diskussion wird auf die Bedeutung des nervösen Terminalretikulums hingewiesen und die Frage der interstitiellen Zellen näher besprochen.  相似文献   

18.
Zusammenfassung Unsere Schlüsse zusammenfassend, können wir nunmehr als bewiesen ansehen, daß 1. die Ganglienzellen des intramuralen Darmgeflechts, gleichgültig ob es sich um denAuerbachschen oderMeissnerschen Plexus handelt, keine bindegewebige Kapsel haben, wenigstens beim Darm des Menschen und derjenigen Säugetiere, die wir untersucht haben. 2. die in großer Zahl befindlichen, ihrer Form nach sehr verschiedenen, nicht weniger auch nach dem Vorhandensein oder Fehlen von Ausläufern, Zellen, die zwischen den Nervenelementen liegen, nach ihrem Bau und ihrem färberischen Verhalten als zu Gliaelementen gehörig angesehen werden müssen, 3. man zu diesen Elementen auch das zwischen den Zellen gelegene Faserngewebe rechnen kann. Jedenfalls kann man es als bewiesen ansehen, daß diese Elemente, sowohl die Zellen wie auch die Fasern, in keiner Beziehung zum Bindegewebe zu setzen sind. 4. Man kann die Rolle dieser geformten und faserigen Elemente in Anologie mit der Rolle dieser Zellen in den spinalen Nervenwurzeln und im n. opticus und olfactorius setzen. Anscheinend dienen sie als Schutz- und Isolierapparat der Ganglienzelle. 5. Schließlich wollen wir betonen, daß der Bau des sympathischen Systems, zum mindesten bezüglich der Kapsel nicht überall der gleiche ist, und daß die Ganglienzellen des Grenzstranges sich in dem Sinne von den Ganglienzellen des intramuralen Darmgeflechts unterscheiden.Zum Schluß halte ich es für eine angenehme Pflicht, Herrn Prof. W.von Möllendorff meinen herzlichsten Dank für seine ständige Aufmerksamkeit, wertvolle Anleitung und die freundliche Aufnahme in seinem Institut auszusprechen.  相似文献   

19.
Zusammenfassung Vorliegende Untersuchungen bezwecken, die Histogenese der Groß-hirnrinde beim Schafe von den frühesten Stadien der Differenzierung der Neuronen und der Gliazellen ab durch die Golgische Chromsilbermethode zu erforschen. Ferner wurden die Änderungen in der Form der Neuronen und der Gliazellen in späteren Stadien der Entwicklung bis zur Geburt verfolgt. Die Beobachtung von His, daß bipolare Neuroblasten von der Keimschicht gegen die Oberfläche der Rinde wandern, wurde bestätigt. Die bipolaren Neuroblasten sammeln sich in der kompakten sog. 'Bil-Dungszone (Koelliker), wo sie sich schon in frühen Stadien der Entwicklung mit der Chromsilbermethode färben. Der obere plumpere Fortsatz der bipolaren Neuroblasten wird zu einem Dendrit (dem Spitzenfortsatz der reiferen Pyramidenzelle), der untere gegen die Keimschicht gerichtete Fortsatz wird zum Neuriten. Die sog. Bildungszone wird durch Einwanderung von Neuroblasten von der Tiefe allmählich dicker; bald differenzieren sich die oberflächlichsten Neuroblasten weiter und wandern in entgegengesetzter Richtung, d. h. gegen die tieferen Schichten, wo sie in verschiedener Höhe stehenbleiben und das charakteristische Gepräge der Pyramidenzellen annehmen. Gleichzeitig fährt die Wanderung von Ganglienzellen von der Tiefe gegen die Oberfläche der Rinde fort. Dieser Vorgang vollzieht sich während der ganzen fetalen Entwicklung und sogar nach der Geburt, wenn die mittlere Schicht eine beträchtliche Dicke erworben hat. Dadurch wird die Zahl der Neuronen bis in späten Perioden des Wachstums allmählich größer. Die Differenzierung der Ganglienzellen, welche in späten Stadien wandern, wenn sogar die weiße Substanz eine beträchtliche Dicke erreicht hat, fährt fort. Die Zellen gewinnen die Merkmale der reifen Zellen (lange Dendriten, Tigroidschollen im Cytoplasma) lange bevor sie ihre definitive Lage erreicht haben. Diese Zellen werden zu den polymorphen Zellen der fertigen Hirnrinde.Die Stützsubstanz der embryonalen Hirnwand besteht ausschließlich aus Fortsätzen der Ependymzellen. Diese bilden sich nur bei dem 250 mm langen Schaffetus zurück. Die Gliazellen erscheinen lange bevor die Fortsätze der Ependymzellen verschwinden, in verschiedenen Höhen der Hirnwand, in der Bildungszone und in der intermediären Schicht. Die Gliazellen sind in der fetalen Rinde mit zahlreichen, feinen Fortsätzen versehen, die ihnen ein besonderes, von dem der reifen Gliazellen verschiedenes Gepräge verleihen. Beim Fortschreiten der Entwicklung unterliegen sie einer tiefen Umwandlung dergestalt, daß neue, ganz verschieden aussehende Fortsätze an Stelle der fetalen erscheinen. Vor der Geburt ähneln sie stark den protoplasmatischen Astrocyten. Die beobachteten Umwandlungen sollen als Ausdruck der ameboiden Tätigkeit der Gliazelle gedeutet werden.Meinen Beobachtungen nach stammt nur ein Teil der Gliazellen von umgewandelten Ependymzellen ab, welche sich aus ihrer ursprünglich tiefen Lage nach der Oberfläche verschoben haben. Andere Gliazellen gehen aus Spongioblasten hervor, d. h. aus Zellen, welche ihren Ursprung direkt aus der Keimschicht nehmen, als scheinbar undifferenzierte Zellen durch die Hirnwand wandern und sich später zu Gliazellen differenzieren [Schaper (1897), Lenhossék (1891)].

Alle presenti ricerohe ha contribuito il C.N.R.  相似文献   

20.
Zusammenfassung Die Befunde an den mit Spezialfärbungen behandelten Schnitten lassen einwandfrei die bindegewebige Natur der Synovialis erkennen. In den Präparaten läßt sich die fibrilläre Interzellularsubstanz zwischen den oberflächlichst gelegenen Zellen und auf der Oberfläche selbst nachweisen. Fernerhin besitzen alle Zellen Fortsätze. So treten die an der Oberfläche liegenden Zellen mit solchen der tieferen Schichten deutlich durch diese zytoplasmatischen Fortsätze in Verbindung. Somit ist also die Intima als fibrozytärer Zellverband anzusprechen, in dessen Maschen sich fibrilläre Interzellularsubstanz befindet. Gegen die Annahme, es handle sich um ein Epithel, spricht auch das Vorkommen von Gefäßen, die durch die Membran hindurchtretend, nur von einer dünnen Lage Interzellularsubstanz bedeckt, frei an der Oberfläche liegen können.Ein weiteres wichtiges Argument für die bindegewebige Natur der Synovialis sind auch die Befunde von Lotzin bei der Vitalfärbung mit Trypanblau. Ferner wies der zellreiche Übergang der Synovialfalten und Zotten eine in die Augen springende Speicherung auf, nach dem Ende hin zunehmend, welches dem Gelenkinnern zugekehrt ist. Auch hier wird die starke Färbung zweifellos von der guten Gefäßversorgung der Zotten ermöglicht. Wie diese Teile, so ist auch die übrige Begrenzung des Gelenkinnern stark gefärbt. Schließlich sei noch darauf hingewiesen, daß sowohl rein histologisch als auch bei der Vitalfärbung eine scharfe Abgrenzung des Knorpels gegen die bindegewebige Synovialis nicht möglich ist.Die zellreichen und zellarmen Gebiete lassen die Möglichkeit zu, daß im Leben durch die Gelenkaktion durch Dehnung und Anspannung oder Erschlaffung und Zusammenschieben eines Intimagebietes derartige an Zellreichtum wechselnde Bilder zustande kommen können. Zellreiche und zellarme Gebiete finden sich nämlich selten an korrespondierenden Stellen der Gelenke, so z. B. am Kniegelenk. Jedenfalls spricht manches in den Präparaten für diese Annahme.Auffallend in den Präparaten ist der Zellreichtum in Gefäßnähe. Es handelt sich hier in der Hauptsache um histiozytäre Formen der Adventitiazellen, zumal ruhende Wanderzellen mit ihren gelappten zytoplasmatischen Fortsätzen und auch freie Bundzellen vorkommen. Doch wechselt der Zellreichtum in den einzelnen Gelenken beträchtlich, was wohl durch die Annahme, daß in den einzelnen Gelenken verschiedene Reizzustände der Intima herrschen, sich erklären dürfte.Die Arbeit von Franceschini, welche mir erst nach Abschluß dieser Arbeit bekannt wurde, behandelt ausführlich den Bau der Synovialmembran und sucht der Verschiedenheit dadurch gerecht zu werden, daß er zwei Typen, den einfachen Typ und den retikulo-histiozytären Typ unterscheidet. Den letzteren macht er hauptsächlich für die Produktion der Synovia verantwortlich. Im ganzen kommt Franceschini ebenfalls zu der Auffassung, daß von einer Epithelauskleidung der Gelenkhöhle keine Rede sein könne, daß die Gelenkhöhle vielmehr eine spezifische Spaltbildung im Mesenchym sei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号