共查询到20条相似文献,搜索用时 15 毫秒
1.
Gutierrez-Cirlos EB Merbitz-Zahradnik T Trumpower BL 《The Journal of biological chemistry》2002,277(52):50703-50709
Mutation of a serine that forms a hydrogen bond to the iron-sulfur cluster of the Rieske iron-sulfur protein to a cysteine results in a respiratory-deficient yeast strain due to formation of iron-sulfur protein lacking the iron-sulfur cluster. The Rieske apoprotein lacking the iron-sulfur cluster is inserted into both monomers of the dimeric cytochrome bc(1) complex and processed to mature size, but the protein lacking iron-sulfur cluster is more susceptible to proteolysis. In addition, the protein environment of center P in one half of the dimer is affected by failure to insert the iron-sulfur cluster as indicated by the fact that only one molecule of myxothiazol can be bound to the cytochrome bc(1) dimer. Although the bc(1) complex lacking the Rieske iron-sulfur cluster cannot oxidize ubiquinol through center P, rates of reduction of cytochrome b by menaquinol through center N are normal. However, less cytochrome b is reduced through center N, and only one molecule of antimycin can be bound at center N in the bc(1) dimer lacking iron-sulfur cluster. These results indicate that failure to insert the [2Fe-2S] cluster impairs assembly of the Rieske protein into the bc(1) complex and that this interferes with proper assembly of both center P and center N in one half of the dimeric enzyme. 相似文献
2.
Sadoski RC Engstrom G Tian H Zhang L Yu CA Yu L Durham B Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting. 相似文献
3.
The primary structure of human Rieske iron-sulfur protein of mitochondrial cytochrome bc1 complex deduced from cDNA analysis 总被引:2,自引:0,他引:2
We isolated a cDNA encoding human Rieske Fe-S protein of mitochondrial cytochrome bc1 complex from a fibroblast cDNA library by colony hybridization. The cDNA contains the nucleotide sequence encoding all of the amino acids (274 residues) comprising the putative precursor to the protein. Based on the known amino acid sequence of bovine Rieske Fe-S protein, the N-terminal extension sequence is presumed to be composed of 78 amino acids with a molecular weight of 8053. The mature protein consists of the same number of amino acid residues as that of its rat and bovine counterparts, having a homology of about 92% with the latter. 相似文献
4.
Cloning and sequence analysis of a cDNA encoding the Rieske iron-sulfur protein of rat mitochondrial cytochrome bc1 complex 总被引:2,自引:0,他引:2
M Nishikimi Y Hosokawa H Toda H Suzuki T Ozawa 《Biochemical and biophysical research communications》1989,159(1):19-25
We have isolated a cDNA clone for the Rieske iron-sulfur protein of rat cytochrome bc1 complex, by screening a rat liver cDNA expression library using antiserum directed against the corresponding protein of bovine. The amino acid sequence deduced from the nucleotide sequence of the cDNA indicated that the mature polypeptide of the rat protein consists of 196 amino acid residues with a molecular weight of 21,465, and that it is formed as a precursor with an amino-terminal extension. Northern blot analysis indicated that rat liver possibly contains different sizes of mRNAs for the Rieske iron-sulfur protein, and Southern blot analysis demonstrated that rats and mice possess a single gene for this protein. 相似文献
5.
The modified Q cycle mechanism accounts for the proton and charge translocation stoichiometry of the bc(1) complex, and is now widely accepted. However the mechanism by which the requisite bifurcation of electron flow at the Q(o) site reaction is enforced is not clear. One of several proposals involves conformational gating of the docking of the Rieske ISP at the Q(o) site, controlled by the stage of the reaction cycle. Effects of different Q(o)-site inhibitors on the position of the ISP seen in crystals may reflect the same conformational mechanism, in which case understanding how different inhibitors control the position of the ISP may be a key to understanding the enforcement of bifurcation at the Q(o) site (Table?1). Here we examine the available structures of cytochrome bc(1) with different Q(o)-site inhibitors and different ISP positions to look for clues to this mechanism. The effect of ISP removal on binding affinity of the inhibitors stigmatellin and famoxadone suggest a "mutual stabilization" of inhibitor binding and ISP docking, however this thermodynamic observation sheds little light on the mechanism. The cd(1) helix of cytochrome b moves in such a way as to accommodate docking when inhibitors favoring docking are bound, but it is impossible with the current structures to say whether this movement of α-cd(1) is a cause or result of ISP docking. One component of the movement of the linker between E and F helices also correlates with the type of inhibitor and ISP position, and seems to be related to the H-bonding pattern of Y279 of cytochrome b. An H-bond from Y279 to the ISP, and its possible modulation by movement of F275 in the presence of famoxadone and related inhibitors, or its competition with an alternate H-bond to I269 of cytochrome b that may be destabilized by bound famoxadone, suggest other possible mechanisms. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins. 相似文献
6.
To investigate the relationship between post-translational processing of the Rieske iron-sulfur protein of Saccharomyces cerevisiae and its assembly into the mitochondrial cytochrome bc1 complex we used iron-sulfur proteins in which the presequences had been changed by site-directed mutagenesis of the cloned iron-sulfur protein gene, so that the recognition sites for the matrix processing peptidase or the mitochondrial intermediate peptidase (MIP) had been destroyed. When yeast strain JPJ1, in which the gene for the iron-sulfur protein is deleted, was transformed with these constructs on a single copy expression vector, mitochondrial membranes and bc1 complexes isolated from these strains accumulated intermediate length iron-sulfur proteins in vivo. The cytochrome bc1 complex activities of these membranes and bc1 complexes indicate that intermediate iron-sulfur protein (i-ISP) has full activity when compared with that of mature sized iron-sulfur protein (m-ISP). Therefore the iron-sulfur cluster must have been inserted before processing of i-ISP to m-ISP by MIP. When iron-sulfur protein is imported into mitochondria in vitro, i-ISP interacts with components of the bc1 complex before it is processed to m-ISP. These results establish that the iron-sulfur cluster is inserted into the apoprotein before MIP cleaves off the second part of the presequence and that this second processing step takes place after i-ISP has been assembled into the bc1 complex. 相似文献
7.
Kyndt JA Fitch JC Berry RE Stewart MC Whitley K Meyer TE Walker FA Cusanovich MA 《Biochimica et biophysica acta》2012,1817(5):811-818
A triad of tyrosine residues (Y152-154) in the cytochrome c(1) subunit (C1) of the Rhodobacter capsulatus cytochrome bc(1) complex (BC1) is ideally positioned to interact with cytochrome c(2) (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations-A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation. 相似文献
8.
We have changed nine conserved aromatic amino acids by site-directed mutagenesis of the cloned iron-sulfur protein gene to determine if any of these residues form an obligatory conduit for electron transfer within the iron-sulfur protein of the yeast cytochrome bc1 complex. The residues include W111, F117, W152, F173, W176, F177, H184, Y205 and F207. Greater than 70% of the catalytic activity was retained for all of the mutated iron-sulfur proteins, except for those containing a W152L and a W176L-F177L double mutation, for which the activity was approximately 45%. The crystal structures of the bc1 complex indicate that F177 and H184 are at the surface of the iron-sulfur protein near the surface of cytochrome c1, but not directly in a linear pathway between the iron-sulfur cluster and the c1 heme. The pre-steady-state rates of reduction of cytochromes b and c1 in mutants in which F177 and H184 were changed to non-aromatic residues were approximately 70-85% of the wild-type rates. There was a large decrease in iron-sulfur protein levels in mitochondrial membranes resulting from the W152L mutation and the W176L-F177L double mutation, and a small decrease for the Y205L, W176L and F177L mutations. This indicates that the decreases in activity resulting from these amino acid changes are due to instability of the altered proteins. These results show that these aromatic amino acids are unnecessary for electron transfer, but several are required for structural stability. 相似文献
9.
Long-range movement of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c1 redox centers plays a key role in electron transfer within the cyt bc1 complex. A series of 21 mutants in the cyt b ef loop of Rhodobacter sphaeroides cyt bc1 were prepared to examine the role of this loop in controlling the capture and release of the ISP from cyt b. Electron transfer in the cyt bc1 complex was studied using a ruthenium dimer to rapidly photo-oxidize cyt c1 within 1 mus and initiate the reaction. The rate constant for electron transfer from the Rieske iron-sulfur center [2Fe2S] to cyt c1 was k1 = 60 000 s-1. Famoxadone binding to the Qo site decreases k1 to 5400 s-1, indicating that a conformational change on the surface of cyt b decreases the rate of release of the ISP from cyt b. The mutation I292A on the surface of the ISP-binding crater decreased k1 to 4400 s-1, while the addition of famoxadone further decreased it to 3000 s-1. The mutation L286A at the tip of the ef loop decreased k1 to 33 000 s-1, but famoxadone binding caused no further decrease, suggesting that this mutation blocked the conformational change induced by famoxadone. Studies of all of the mutants provide further evidence that the ef loop plays an important role in regulating the domain movement of the ISP to facilitate productive electron transfer and prevent short-circuit reactions. 相似文献
10.
We have used site-directed mutagenesis of the Saccharomyces cerevisiae Rieske iron-sulfur protein gene (RIP 1) to convert cysteines 159, 164, 178, and 180 to serines, and to convert histidines 161 and 181 to arginines. These 4 cysteines and 2 histidines are conserved in all Rieske proteins sequenced to date, and 4 of these 6 residues are thought to ligate the iron-sulfur cluster to the apoprotein. We have also converted histidine 184 to arginine. This histidine is conserved only in respiring organisms. The site-directed mutations of the six fully conserved putative iron-sulfur cluster ligands result in an inactive iron-sulfur protein, lacking iron-sulfur cluster, and failure of the yeast to grow on nonfermentable carbon sources. In contrast, when histidine 184 is replaced by arginine, the iron-sulfur cluster is assembled properly and the yeast grow on nonfermentable carbon sources. The site-directed mutations of the 6 fully conserved residues do not prevent post-translational import of iron-sulfur protein precursor into mitochondria, nor do the mutations prevent processing of iron-sulfur protein precursor to mature size protein by mitochondrial proteases. Optical spectra of mitochondria from the six mutants indicate that cytochrome b is normal, in contrast to the deranged spectrum of cytochrome b which results when the iron-sulfur protein gene is deleted. In addition, mature size iron-sulfur apoprotein is associated with cytochrome bc1 complex purified from a site-directed mutant in which iron-sulfur cluster is not inserted. These results indicate that mature size iron-sulfur apoprotein, lacking iron-sulfur cluster, is inserted into the cytochrome bc1 complex, where it interacts with and preserves the optical properties of cytochrome b. Insertion of the iron-sulfur cluster is not an obligatory prerequisite to processing of the protein to its final size. Either the processing protease cannot distinguish between iron-sulfur protein with or without the iron-sulfur cluster, or insertion of the iron-sulfur cluster occurs after the protein is processed to its mature size, possibly after it is assembled in the cytochrome bc1 complex. 相似文献
11.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow. 相似文献
12.
Stigmatellin, a Q(P) site inhibitor, inhibits electron transfer from iron-sulfur protein (ISP) to cytochrome c1 in the bc1 complex. Stigmatellin raises the midpoint potential of ISP from 290 mV to 540 mV. The binding of stigmatellin to the fully oxidized complex, oxidized completely by catalytic amounts of cytochrome c oxidase and cytochrome c, results in ISP reduction. The extent of ISP reduction is proportional to the amount of inhibitor used and reaches a maximum when the ratio of inhibitor to enzyme complex reaches unity. A g = 2.005 EPR peak, characteristic of an organic free radical, is also observed when stigmatellin is added to the oxidized complex, and its signal intensity depends on the amount of stigmatellin. Addition of ferricyanide, a strong oxidant, to the oxidized complex also generates a g = 2.005 EPR peak that is oxidant concentration-dependent. Oxygen radicals are generated when stigmatellin is added to the oxidized complex in the absence of the exogenous substrate, ubiquinol. The amount of oxygen radical formed is proportional to the amount of stigmatellin added. Oxygen radicals are not generated when stigmatellin is added to a mutant bc1 complex lacking the Rieske iron-sulfur cluster. Based on these results, it is proposed that ISP becomes a strong oxidant upon stigmatellin binding, extracting electrons from an organic compound, likely an amino acid residue. This results in the reduction of ISP and generation of organic radicals. 相似文献
13.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic properties of the Rieske iron-sulfur cluster. EPR spectra of the Rieske proteins lacking the disulfide bridge indicate the iron-sulfur cluster is assembled in the absence of the disulfide bridge, but there are significant shifts in all g values, indicating a change in the electronic structure of the [2Fe-2S] iron-sulfur center. In addition, the midpoint potential of the iron-sulfur cluster is lowered from 265 mV in the Rieske protein from wild-type yeast to 150 mV in the protein from the C164Y/C180L mutant and to 160 mV in the protein from the C164Y/C180V mutant. Ubiquinol-cytochrome c reductase activities of the bc(1) complexes with Rieske proteins lacking the disulfide bridge are less than 1% of the activity of the bc(1) complex from wild-type yeast, even though normal amounts of the iron-sulfur protein are present as judged by Western blot analysis. These activities are lower than the 105-115 mV decrease in the midpoint potential of the Rieske iron-sulfur cluster can account for. Pre-steady-state reduction of the bc(1) complexes with menadiol indicates that quinol is not oxidized through center P but is oxidized through center N. In addition, the levels of stigmatellin and UHDBT binding are markedly diminished, while antimycin binding is unaffected, in the bc(1) complexes with Rieske proteins lacking the disulfide bridge. Taken together, these results indicate that the ubiquinol oxidation site at center P is damaged in the bc(1) complexes with Rieske proteins lacking the disulfide bridge even though the iron-sulfur cluster is assembled into the Rieske protein. 相似文献
14.
Engstrom G Xiao K Yu CA Yu L Durham B Millett F 《The Journal of biological chemistry》2002,277(34):31072-31078
Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron-sulfur center (2Fe-2S) to cyt c(1) with a rate constant of 80,000 s(-1). Experiments were carried out to evaluate whether the reaction was rate-limited by true electron transfer, proton gating, or conformational gating. The temperature dependence of the reaction yielded an enthalpy of activation of +17.6 kJ/mol, which is consistent with either rate-limiting conformational gating or electron transfer. The rate constant was nearly independent of pH over the range pH 7 to 9.5 where the redox potential of 2Fe-2S decreases significantly due to deprotonation of His-161. The rate constant was also not greatly affected by the Rieske iron-sulfur protein mutations Y156W, S154A, or S154A/Y156F, which decrease the redox potential of 2Fe-2S by 62, 109, and 159 mV, respectively. It is concluded that the electron transfer reaction from 2Fe-2S to cyt c(1) is controlled by conformational gating. 相似文献
15.
Nicholas Fisher Ingrid Bourges Philip Hill Gael Brasseur Brigitte Meunier 《European journal of biochemistry》2004,271(7):1292-1298
The mitochondrial cytochrome b missense mutation, G167E, has been reported in a patient with cardiomyopathy. The residue G167 is located in an extramembranous helix close to the hinge region of the iron-sulfur protein. In order to characterize the effects of the mutation on the structure and function of the bc(1) complex, we introduced G167E into the highly similar yeast cytochrome b. The mutation had a severe effect on the respiratory function, with the activity of the bc(1) complex decreased to a few per cent of the wild type. Analysis of the enzyme activity indicated that the mutation affected its stability, which could be the result of an altered binding of the iron-sulfur protein on the complex. G167E had no major effect on the interaction between the iron-sulfur protein headgroup and the quinol oxidation site, as judged by the electron paramagnetic resonance signal, and only a minor effect on the rate of cytochrome b reduction, but it severely reduced the rate of cytochrome c(1) reduction. This suggested that the mutation G167E could hinder the movement of the iron-sulfur protein, probably by distorting the structure of the hinge region. The function of bc(1) was partially restored by mutations (W164L and W166L) located close to the primary change, which reduced the steric hindrance caused by G167E. Taken together, these observations suggest that the protein-protein interaction between the n-sulfur protein hinge region and the cytochrome b extramembranous cd2 helix is important for maintaining the structure of the hinge region and, by consequence, the movement of the headgroup and the integrity of the enzyme. 相似文献
16.
Redox transitions in the Rhodobacter capsulatus cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy combined with synchronous visible spectroscopy, in both the wild type and a cytochrome c(1) point mutant, M183K, in which the midpoint potential of heme was lowered from the wild-type value of 320 mV to 60 mV. Overall redox difference spectra of the wild type and M183K mutant were essentially identical, indicating that the mutation did not cause any major structural perturbation. Spectra were compared with data on the bovine bc(1) complex, and tentative assignments of several bands could be made by comparison with available data on model compounds and crystallographic structures. The bacterial spectra showed contributions from ubiquinone that were much larger than in the bovine enzyme, arising from additional bound and adventitious ubiquinone. The M183K mutant enabled selective reduction of the iron-sulfur protein which in turn allowed the IR redox difference spectra of ISP and cytochrome c(1) to be deconvoluted at high signal/noise ratios, and features of these spectra are interpreted in light of structural and mechanistic information. 相似文献
17.
U Brandt U Haase H Sch?gger G von Jagow 《The Journal of biological chemistry》1991,266(30):19958-19964
The binding of specific inhibitors to the ubiquinol oxidation pocket ("QP center") of cytochrome c reductase was analyzed before and after removal of bound phospholipid and the "Rieske" iron-sulfur protein using optical spectroscopy and fluorescence quench binding assays. The enzyme lacking iron-sulfur protein showed almost unchanged, tight binding of the E-beta-methoxyacrylate inhibitors oudemansin A and MOA-stilbene, whereas binding of the chromone inhibitor stigmatellin was almost completely abolished. The affinity of the weak inhibitor 3-undecyl-2-hydroxy-naphthoquinone was decreased. Oudemansin A binding to the defective pocket of the iron-sulfur protein-depleted enzyme was lowered by added phospholipid. It was deduced from these results that the QP center is a spacious pocket formed by domains of cytochrome b, bearing the E-beta-methoxcyacrylate binding site, and the iron-sulfur protein, bearing the stigmatellin binding site. Moreover, removal of the iron-sulfur protein leaves this pocket defective but essentially unchanged in its remaining binding capability. The affinity of three preparations of cytochrome c reductase, the complete, the delipidated, and the iron-sulfur depleted enzyme for E-beta-methoxyacrylate-stilbene, was analyzed for different redox states of the catalytic centers of cytochrome c reductase. The apparent Kd values for the different redox states were interpreted in terms of two conformational states. It is suggested that these changes reflect the two states of the "catalytic switch" proposed recently for the QP pocket of cytochrome c reductase (Brandt, U., and von Jagow, G. (1991) Eur. J. Biochem. 195, 163-170). According to the refined model presented in this work, changeover to the "b" state is triggered by reduction of the iron-sulfur cluster, and changeover back to the "FeS" state is triggered by electron transfer from the low potential onto the high potential heme b center. Our interpretation implies that the stability of the two states is affected by the redox states of the enzyme, but that additionally changing the redox states of the two centers is required for "switching" on a catalytic time scale. 相似文献
18.
Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc(1) complex. 下载免费PDF全文
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper we report the results of steered molecular dynamics simulations inducing, through an applied torque within 1 ns, a 56 degrees rotation of the soluble domain of ISP. For this purpose, a solvated structure of the bc(1) complex in a phospholipid bilayer (a total of 206,720 atoms) was constructed. A subset of 91,061 atoms was actually simulated with 45,131 moving atoms. Point charge distributions for the force field parametrization of heme groups and the Fe(2)S(2) cluster of the Rieske protein included in the simulated complex were determined. The simulations showed that rotation of the soluble domain of ISP is actually feasible. Several metastable conformations of the ISP during its rotation were identified and the interactions stabilizing the initial, final, and intermediate positions of the soluble head of the ISP domain were characterized. A pathway for proton conduction from the Q(o) site to the solvent via a water channel has been identified. 相似文献
19.
Structure and function of the mitochondrial bc1 complex. A mutational analysis of the yeast Rieske iron-sulfur protein 总被引:1,自引:0,他引:1
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the loop that contains the ligands of the cluster. 相似文献
20.
Structures of mitochondrial bc1 complex have been reported based on four different crystal forms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe-2S] protein, surprisingly, appeared at three different positions: the "c1" position, where the [2Fe-2S] cluster exists in close proximity to the heme c1; the "b" position, where the [2Fe-2S] cluster exist in close proximity to the cytochrome b; and the "intermediate" position where the [2Fe-2S] cluster exists in-between "c1" and "b" positions. The conformational changes between these three positions can be explained by a combination of two rotations; (1) a rotation of the entire extrinsic domain and (2) a relative rotation between the cluster-binding fold and the base fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcation mechanism at the Q(P) binding pocket of the bc1 complex is well explained using these conformational changes of the Rieske [2Fe-2S] protein. 相似文献