首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The rat ventral tegmentum (containing dendrites and somata of mesolimbic neurones) contained 1.3 μg/g of dopamine, which was reduced to 40% of the control level by reserpine. Slices of ventral tegmentum were able to accumulate and release (elevated potassium or protoveratrine A) exogenous [3H]dopamine. In parallel studies the uptake mechanism in ventral tegmentum was shown to be virtually identical to the nerve terminal uptake of [3H]dopamine by slices of nucleus accumbens. The release of [3H]dopamine was indistinguishable from that observed in substantia nigra, where there is substantial evidence for dendritic mechanisms. Basal adenylate cyclase activity was present, but dopamine-stimulated activity was not detected. A high GABA concentration (7.7 μmol/g) was present in ventral tegmentum, in conjunction with an uptake and a release mechanism for [3H]GABA. GABA and muscimol elicited a small, reproducible efflux of [3H]dopamine, but an interaction between dopamine and [3H]GABA efflux was not observed. The results are in accord with transmitter roles for dopamine and GABA in the somatoden-dritic area of mesolimbic dopaminergic neurons.  相似文献   

2.
The binding of [3H]spiperone to membranes of the nucleus accumbens of the rat brain was studied in vitro and found to be of high affinity, rapid, saturable, reversible and stereospecific. Dissociation and saturation experiments indicated the presence of two specific binding sites with apparent dissociation constants of 70 pM and greater than 1 nM. Specific binding with 25 pM [3H]spiperone represented greater than 90% of total binding and was displaced by dopaminergic agonists, neuroleptic drugs and ergot derivatives. The rank order of potency for the ergot derivatives was bromocryptine greater than pergolide greater than lergotrile, and that for D-2 antagonists was domperidone greater than sulpiride greater than molindone greater than metoclopramide. Noradrenergic, histaminergic and serotonergic components of the binding were not detected. [3H]Spiperone binds to high-affinity sites in homogenates of nucleus accumbens, which are likely to be D-2 receptors.  相似文献   

3.
We studied correlations between the frequency of background impulse activity (BIA) of dopaminergic (DAergic) neurons of the ventral tegmentum (VT) and spectral power (SP) of the frequency components of EEG samples recorded in awake cats. The EEG was recorded monopolarly (electrodes were fixed in the cranial bones) from the frontal, occipital, and right and left temporal regions of the cortex. In a great majority of the cases, the BIA frequency of VT DA-ergic neurons demonstrated significant positive correlations with changes in the SPs of the alpha and beta EEG rhythms. The closest correlations of the spiking frequency of DA-ergic cells with the SP of the alpha rhythm was observed in the occipital region, while those with the beta SP were found in the frontal area. Correlations of the activity of DA-ergic neurons with the SPs of the alpha and beta rhythms in the left temporal cortical zone were closer, as compared with those in the symmetrical right zone. Correlations of the SPs of the delta, theta, and gamma EEG components with the discharge frequency of VT DA neurons were of opposite directions, and in most cases such correlations did not reach the level of significance. The results of this study show that, in some cases, specific EEG patterns can be considered indicators of the state of the cerebral VT DA-ergic system. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 359–367, July–August, 2008.  相似文献   

4.
Interactions of the potent phencyclidine receptor agonist MK-801 with the dopaminergic system were examined in various brain regions in the rat. MK-801 increased dopamine (DA) metabolism in the pyriform cortex, entorhinal cortex, prefrontal cortex, striatum, olfactory tubercle, amygdala, and septum without affecting DA metabolism in the cingulate cortex and nucleus accumbens. In pyriform cortex and amygdala, MK-801 was more potent than phencyclidine at increasing DA metabolism. Local injections of MK-801 into ventral tegmental area and into the amygdala/pyriform cortex interface indicated that MK-801 may act at the cell body as well as the nerve terminal level to increase DA metabolism and that ongoing dopaminergic neuronal activity is a prerequisite for full drug action.  相似文献   

5.
Direct intrastriatal injection of N-methyl-D-aspartate (NMDA; 100 micrograms/rat) increased striatal dopamine (DA) release in vivo. However, parenteral administration of (+/-)-3-(2-carboxypiperizin-4-yl)propyl-1-phosphonic acid (CPP) and cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755) did not alter DA metabolism and release in several brain regions in the rat and mouse. Intracerebroventricular administration of the competitive NMDA antagonists CPP, CGS-19755, 2-amino-5-phosphonopentanoate, and 2-amino-7-phosphonoheptanoate did not alter rat striatal DA metabolism and release but profoundly reduced cerebellar cyclic GMP (cGMP) levels in the same animals. CPP and CGS-19755 decreased basal cerebellar cGMP levels in the mouse with ED50 values of 6 and 1 mg/kg, i.p., respectively. CPP antagonized the harmaline-induced increases in cGMP levels with an ED50 value of 5.0 mg/kg, i.p. CPP (25 mg/kg, i.p.) also decreased basal cGMP levels in mouse cerebellum for up to 3 h, a result suggesting brain bioavailability and a long duration of NMDA receptor antagonism in vivo. These contrasting patterns suggest that NMDA receptors exert a tonic excitatory tone on the guanine nucleotide signal transduction pathway in the cerebellum while exerting a phasic control over nigrostriatal dopaminergic neurotransmission. These results also indicate that competitive NMDA antagonists, unlike phencyclidine receptor agonists, may not mediate biochemical and behavioral effects via dopaminergic mechanisms.  相似文献   

6.
Abstract: This study was aimed at identifying the neuronal pathways that mediate the eating-induced increase in the release of dopamine in the nucleus accumbens of the rat brain. For that purpose, a microdialysis probe was implanted in the ventral tegmental area and a second probe was placed in the ipsilateral nucleus accumbens. Receptor-specific compounds acting on GABAA (40 µ M muscimol; 50 µ M bicuculline), GABAB (50 µ M baclofen), acetylcholine (50 µ M carbachol), NMDA [30 µ M (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP)], and non-NMDA [300 µ M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] receptors were infused into the ventral tegmental area by retrograde dialysis, whereas extracellular dopamine was recorded in the ipsilateral nucleus accumbens. Intrategmental infusion of muscimol or baclofen decreased extracellular dopamine in the ipsilateral nucleus accumbens; CPP and CNQX were without effect, and bicuculline and carbachol increased dopamine release. During infusion of the various compounds, food-deprived rats were allowed to eat for 10 min. The infusions of muscimol, bicuculline, baclofen, carbachol, and CNQX did not prevent the eating-induced increase in extracellular dopamine in the nucleus accumbens. However, during intrategmental infusion of CPP, the eating-induced increase in extracellular dopamine in the nucleus accumbens was suppressed. These results indicate that a glutamatergic projection to the ventral tegmental area mediates, via an NMDA receptor, the eating-induced increase in dopamine release from mesolimbic dopamine neurons.  相似文献   

7.
Prolyl oligopeptidase (PREP) is an intracellular enzyme digesting small proline-containing peptides. Since PREP resides the same brain areas as neurotensin in the nigrostriatal and mesolimbic dopaminergic pathways, we were interested to study if there is an intracellular interaction between them. A colocalization of PREP with neurotensin and neurotensin receptor 1 (NTS1) in the rat striatum, nucleus accumbens (NAcc), substantia nigra (SN) and ventral tegmental area (VTA) was studied with immunofluorescence. From the same brain areas, the levels of dopamine and its metabolites were measured 1 h after the injection of saline, NTS1 ligands (JMV-449; 5 μg) or antagonist (SR142948; 5 μg) to the rat striatum or NAcc. We also studied whether an intraperitoneal injection of a PREP inhibitor (KYP-2047; 5 mg/kg) affects the levels of dopamine and its metabolites alone or modifies the effects of the NTS1 ligands. PREP was highly colocalized with neurotensin and NTS1 in the VTA, and with NTS1 in the SN. Colocalization was moderate or low in other brain areas. When injected to the striatum, JMV-449 had a tendency to increase dopamine (p = 0.052) and metabolite levels in the striatum and SN, whereas SR142948 did not. After the injection to the NAcc, JMV-449 but not SR142948, increased dopamine levels in the VTA and dopamine metabolite levels in the NAcc and VTA. KYP-2047 decreased the dopamine levels in the striatum, but increased dopamine metabolite levels in the NAcc and VTA. Our results suggest a novel role for PREP in the modulation of dopaminergic transmission, which may be different in nigrostriatal and mesolimbic pathways.  相似文献   

8.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

9.
Abstract: Primary cultures of rat ventral mesencephalon were used to elucidate the role of chronic stimulation of dopamine (DA) D2 autoreceptors in the development of fetal dopaminergic neurons in vitro. Cultured dopaminergic neurons, as visualized by tyrosine hydroxylase immunocytochemistry, became more differentiated in the course of cultivation time and exhibited specific high-affinity uptake for [3H]DA. In rat striatal tissue, activation of D2 receptors has been shown to inhibit the release of DA. Previously accumulated [3H]DA was released from the cultures upon depolarization in a Ca2+-dependent manner. K+-evoked [3H]DA release could be inhibited by the selective D2 receptor agonists LY 171555 and N0437 in a concentration-dependent manner. The inhibitory effects of LY 171555 and N0437 were antagonized by the selective DA D2 receptor antagonist sulpiride. These observations are indicative for the expression of functional D2 receptors in the cultures. Daily treatment of these cultures for 7 days with LY 171555 or sulpiride did not lead to any change in protein content, the number of tyrosine hydroxylase-immunoreactive neurons, or the uptake capacity for [3H]DA. Our data demonstrate that chronic stimulation of DA D2 receptors does not impair survival or differentiation of cultured fetal dopaminergic neurons.  相似文献   

10.
摘要 目的:研究小鼠中脑腹侧被盖区(VTA)多巴胺能神经元接受的全脑输入性上游投射及其输出性下游投射,解析其全脑上下游神经环路连接。方法:用立体定位仪将辅助病毒AAV-EF1a-DIO-GT和AAV-EF1a-DIO-G的混合液(1:1)注射到DAT-cre转基因小鼠的VTA脑区,2周后将重组狂犬病毒(RV)EnVA-RV-mCherry微注射到VTA脑区,1周后RV病毒完成逆向跨突触感染并充分表达荧光蛋白,全脑冰冻切片,用全自动扫描荧光显微镜全脑拍片。用立体定位仪将顺行示踪病毒AAV-EF1a-DIO-GFP微注射到DAT-cre转基因小鼠的VTA脑区,2周后待病毒及荧光蛋白充分表达后,全脑冰冻切片,VTA区脑片用TH抗体行免疫荧光染色,全自动扫描荧光显微镜全脑拍片。结果:狂犬病毒逆向跨单级突触示踪结果显示,全脑许多脑区核团神经元表达RV病毒携带的红色荧光蛋白,主要包括前脑皮层、纹状体、伏隔核、下丘脑视前区、外侧下丘脑、下丘脑室旁核、杏仁核、腹侧被盖区、黑质、中缝背核、臂旁核、缰核。顺行示踪病毒结果显示,表达绿色荧光蛋白的纤维投射主要集中在内侧前额叶皮层、纹状体、伏隔核、背外侧隔核、杏仁核、外侧下丘脑几个脑区。结论:VTA多巴胺能神经元的上游输入性投射广泛的分布于全脑,包括前脑皮层、基底神经节区、下丘脑区、边缘系统、中脑的许多核团都向其发出纤维投射。VTA多巴胺神经元的下游输出性投射主要集中在基底神经节的伏隔核和纹状体,内侧前额叶皮层及下丘脑也有一定投射。  相似文献   

11.
Chronic nicotine (0.8 mg/kg by daily subcutaneous injection) over a 7 to 28-day period was found to increase the activity of tyrosine hydroxylase in predominantly noradrenergically innervated regions but not in dopaminergic projection areas. Increases in tyrosine hydroxylase activity were observed in dopaminergic cell body regions only after nicotine treatment for 3 to 5 days. The increase in tyrosine hydroxylase activity in noradrenergic neurones was evident first in the cell bodies in the locus coeruleus from 3 to 7 days, reaching 223% of control activities, and was followed by increases of up to 205% in the terminals up to 3 weeks later. It was then established that nicotine for 7 days was sufficient to increase the activity of the enzyme to the same extent in the terminals at 21 days even without further nicotine administration. This is consistent with axonal transport preceded by induction of the enzyme in noradrenergic cell bodies, whereas "delayed activation" might account for the transient effect seen in dopaminergic cell body regions. The response in the locus coeruleus to nicotine for 7 days was completely blocked by daily preinjection with mecamylamine but not with hexamethonium, which is consistent with the effect of nicotine on tyrosine hydroxylase being mediated by central nicotinic receptors.  相似文献   

12.
13.
Abstract: The present study determined if repeated cocaine injections alter the effect of cocaine on extracellular glutamate in the ventral tegmental area (VTA). All rats were treated with daily cocaine (15 mg/kg i.p. × 2 days, 30 mg/kg i.p. × 5 days) or saline for 7 days. At 21 days after discontinuing the daily injections, a dialysis probe was placed into the VTA and the extracellular levels of glutamate were estimated. A systemic injection of cocaine (15 mg/kg i.p.) elevated extracellular glutamate in the VTA of rats pretreated with daily cocaine but not in the daily saline-pretreated subjects. No significant change in glutamate was produced by a saline injection in either pretreatment group. In a group of rats pretreated with daily cocaine, the D1 antagonist SCH-23390 (30 µ M ) was infused through the dialysis probe prior to the acute injections of saline and cocaine. SCH-23390 prevented the increase in extracellular glutamate associated with the acute administration of cocaine. Behavioral data were collected simultaneously with the measures of extracellular glutamate. The behavioral stimulant effect of cocaine was greater in cocaine-pretreated than saline-pretreated subjects, and the behavioral augmentation in cocaine-pretreated rats was partly blocked by SCH-23390. These data support the hypotheses that repeated cocaine administration produces an increase in the capacity of D1 receptor stimulation to release glutamate in the VTA and that this mechanism partly mediates behavioral sensitization produced in rats treated with daily cocaine injections.  相似文献   

14.
Inert gas narcosis is a neurological syndrome inducing several psychomotor disorders. Nitrogen narcosis represents the major cause of performances decrease concerning divers, in the depth range of 30 to 90 meters (0.3 to 0.9 MegaPascal). As narcosis affects motor functions, we chose to study the nigro-striatal dopaminergic pathway owing to its involvement in psychomotor disorders. The aim of this study is to compare, in the Sprague-Dawley rats striatium, changes in extracellular concentrations of Dopamine and its metabolites: Dihydroxyphenylacetic Acid (DOPAC) and Homovanillic Acid (HVA) under a normobaric narcosis (20; 40, and 60% of Nitrous Oxide (N2O)) on one hand, and under 0.9 MegaPascal of Nitrox (Nitrogen Oxygen normoxic mixture) on the other hand. In fact, if these two conditions are similar, normobaric narcosis would allow us to explain nitrogen narcosis mechanisms without any pressure effect. The first emergence of Dopamine and metabolites variations occurs around 40% of N2O. Dopamine decreases by 45% and is accompanied by a DOPAC diminution of 7% while HVA concentrations remain constant. Under 60% N2O, these decrease have a greater amplitude. The Dopamine variations obtained under 0.9 Mpa of Nitrox are closed to alterations induced by 60% of N2O (DA decreases by 70%).  相似文献   

15.
Abstract: The purpose of the present study was to investigate the effects of repeated administration of the neurotensin receptor antagonist, SR 48692, on the activity of the mesocortical and mesolimbic dopaminergic (DA) systems. We showed that daily administration of SR 48692 for 15 days (1 mg/kg i.p.) to Wistar rats increased the expression of tyrosine hydroxylase mRNA and protein in the ventral mesencephalon. Simultaneous in vivo microdialysis in the shell part of the nucleus accumbens (AcbSh) and the medial prefrontal cortex (mPFC) revealed that blockade of neurotensin receptors for 15 days decreased basal extracellular levels of DA (∼50%) and its metabolites in the AcbSh, whereas no modification in DA levels was observed in the mPFC. In animals submitted to a forced swimming stress, which preferentially enhanced extracellular DA levels in the mPFC, treatment with SR 48692 failed to affect the stress-induced increase in DA. Moreover, given that glucocorticoids can modulate the activity of mesencephalic DA neurons, we examined the effect of the same SR 48692 treatment on corticosterone levels in dialysates from the AcbSh. We found that repeated SR 48692 did not affect the basal levels of free corticosterone, but significantly reduced the increase induced by forced swimming stress. The present results demonstrate that repeated treatment with SR 48692 modulates selectively the DA mesolimbic system when compared with the mesocortical pathway. These findings suggest that long-term treatment with selective neurotensin receptor antagonists could have potential clinical utility in the treatment of neuropsychiatric disorders associated with hyperactivity of the mesolimbic DA systems or the hypothalamic-pituitary-adrenal axis.  相似文献   

16.
Abstract: The high levels of dopamine (DA) detected in the ventral tegmental area (VTA), as well as in the substantia nigra (SN) of human brain, suggest the presence of DA cells in these areas. This favors the possible existence of a mesocortico-limbic system besides the mesostriatal pathway. In Parkinson's disease both DA systems seem to be deficient.  相似文献   

17.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

18.
Abstract: In this study, we compare the electrically evoked, somatodendritic release of dopamine (DA) with axonal release of serotonin (5-HT) in the substantia nigra (SN) and ventral tegmental area (VTA) in vitro by using fast-scan cyclic voltammetry with carbon-fibre microelectrodes. Furthermore, we have examined transmitter release in these regions in guinea-pig compared with rat. Somatodendritic DA was released, as shown previously, in guinea-pig VTA, SN pars compacta (SNc), and occasionally in SN pars reticulata (SNr). 5-HT was rarely released, except in SNr, where nonetheless it only contributed to <30% of amine signals. In rat midbrain, somatodendritic DA release was evoked to a similar extent as in guinea-pig. However, a clear species difference was apparent; i.e., 5-HT and DA were detected equally in rat SNc, whereas in rat SNr, 5-HT was the predominant transmitter detected. Nevertheless, electrically evoked extracellular concentrations of 5-HT in SNc and SNr were, respectively, seven- and fourfold less than DA in SNc. 5-HT release was low in all regions in neonatal rat slices before the maturation of 5-HT terminals. Hence, axonal 5-HT transmission in midbrain exhibits both species and site selectivity. Moreover, whereas somatodendritic DA release is conventionally regarded as modest compared with axon terminal release in striatum, somatodendritic DA release can result in significantly greater extracellular levels than a transmitter released from axon terminals in the same locality.  相似文献   

19.
Abstract: Previously, it was shown that microinfusion of the GABAA antagonist picrotoxin into the anterior ventral tegmental area (VTA) is reinforcing. It was hypothesized that this reinforcing effect of picrotoxin in the anterior VTA is mediated, at least in part, by the activation of the mesoaccumbens dopamine (DA) system. The objective of the present study was to determine if blockade of GABAA receptors in the anterior VTA can increase extracellular levels of DA in the nucleus accumbens (ACB), using an in vivo microdialysis technique in freely moving rats. Concentrations of picrotoxin (40, 80, and 160 µ M ) that had previously been shown to produce a reinforcing effect increased the extracellular levels of DA and its major metabolites in the ACB. The increased extracellular DA levels induced by intra-VTA injection of picrotoxin was markedly attenuated by coadministration with the GABAA agonist muscimol, whereas intra-VTA injection of muscimol alone did not have an apparent effect on extracellular DA levels in the ACB. Microinjection of another GABAA antagonist, bicuculline, into the anterior VTA also increased the extracellular release of DA in the ACB. These results suggest that DA neurons projecting from the anterior VTA to the ACB are tonically inhibited by GABA through its actions at the GABAA receptors.  相似文献   

20.
The effect of light on retinal dopamine (DA) synthesis and content in dark-adapted rats was assessed 15 h and 2, 4, 7 and 16 days after eye opening (13 to 14 days after birth). The accumulation of dihydroxyphenylalanine (DOPA) following inhibition of its decarboxylation was used to estimate DA synthesis. At 7 and 16 days, but not earlier, light significantly augmented DOPA formation. These increases were as dramatic as those reported for adult rats. DA in dark-adapted retinas ranged from 0 (undetectable) at 15 h to 83% of adult levels at 16 days, but were only 36% of that of adult retinas at 7 days. Light produced a significant decline in DA at 16 days but not at any other time point. These results indicate that the dopaminergic neurons synthesize transmitter and respond to light at a time when the neuronal pools of DA are not yet mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号