首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of three primary amphipathic Cell-Penetrating Peptides (CPPs) CH3-CO-GALFLGFLGAAGSTMGAWSQPKKKRKV-NH-CH2-CH2-SH, CH3-CO-GALFLAFLAAALS LMGLWSQPKKKRKV-NH-CH2-CH2-SH, and CH3-CO-KETWWETWWTEWSQPKKKRKV-NH-CH2-CH2-SH called Pβ, Pα and Pep-1, respectively, to promote pore formation is examined both in Xenopus oocytes and artificial planar lipid bilayers. A good correlation between pore formation and their structural properties, especially their conformational versatility, was established. This work shows that the cell-penetrating peptides Pβ and Pep-1 are able to induce formation of transmembrane pores in artificial bilayers and that these pores are most likely at the basis of their ability to facilitate intracellular delivery of therapeutics. In addition, their behaviour provides some information concerning the positioning of the peptides with respect to the membrane and confirms the role of the membrane potential in the translocation process.  相似文献   

2.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic alpha-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

3.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic α-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

4.
The Cell membrane is impermeable for most peptides, proteins, and oligonucleotides. Moreover, some cationic peptides, the so-called cell-penetrating peptides (CPPs), are able to translocate across the membrane. This observation has attracted much attention because these peptides can be covalently coupled to different macromolecules, which are efficiently delivered inside the cell. The mechanism used by these peptides to pass across the membrane is a controversial matter of debate. It has been suggested that endocytosis is the main mechanism of internalization and this was confirmed by several studies for different peptides. Pep-1 is an exception worthy of attention for its ability to translocate cargo macromolecules without the need to be covalently attached to them. A preferential internalization by an endocytosis-independent mechanism was demonstrated both in vitro and in vivo. Pep-1 has a high affinity to lipidic membranes, it is able to insert and induce local destabilization in the lipidic bilayer, although without pore formation. No cytotoxic effects were found for pep-1 concentrations where translocation is fully operative. At much higher concentrations, membrane disintegration takes place by a detergent-like mechanism that resembles anti-microbial peptide activity. In this review, the ability of pep-1 to transverse the membrane by an endocytosis-independent mechanism, not mediated by pores as well as an ability to induce membrane disintegration at high peptide concentration, is demonstrated.  相似文献   

5.
Melittin interactions with lipid bilayers and melittin formed pores are extensively studied to understand the mechanism of the toroidal pore formation. Early experimental studies suggested that melittin peptide molecules are anchored by their positively charged residues located next to the C-terminus to only one leaflet of the lipid bilayer (asymmetric arrangement). However, the recent non-linear spectroscopic experiment suggests a symmetric arrangement of the peptides with the C-terminus of the peptides anchored to both bilayers. Therefore, we present here a computational study that compares the effect of symmetric and asymmetric arrangements of melittin peptides in the toroidal pore formation. We also investigate the role of the peptide secondary structure during the pore formation. Two sets of the symmetric and asymmetric pores are prepared, one with a helical peptide from the crystal structure and the other set with a less helical peptide. We observe a stable toroidal pore being formed only in the system with a symmetric arrangement of the less helical peptides. Based on the simulation results we propose that the symmetric arrangement of the peptides might be more favorable than the asymmetric arrangement, and that the helical secondary structure is not a prerequisite for the formation of the toroidal pore.  相似文献   

6.
Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal fragment phi are released from particles. Both also associate with RBC membranes and contribute to pore formation in the absence of particles, but mu1N has the primary and sufficient role. Particles with a mutant form of mu1, unable to release mu1N or form pores, lack the ability to associate with membranes. They are, however, recruited by pores preformed with peptides released from wild-type particles or with synthetic mu1N. The results provide evidence that docking to membrane pores by virus particles may be a next step in membrane penetration after pore formation by released peptides.  相似文献   

7.
The vacuolating toxin VacA, a major determinant of Helicobacter pylori-associated gastric diseases, forms anion-selective channels in artificial planar lipid bilayers. Here we show that VacA increases the anion permeability of the HeLa cell plasma membrane and determines membrane depolarization. Electrophysiological and pharmacological approaches indicated that this effect is due to the formation of low-conductance VacA pores in the cell plasma membrane and not to the opening of Ca(2+)- or volume-activated chloride channels. VacA-dependent increase of current conduction both in artificial planar lipid bilayers and in the cellular system was effectively inhibited by the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), while2-[(2-cyclopentenyl-6,7dichloro-2, 3-dihydro-2-methyl-1-oxo-1H-inden-5-yl)oxy]acetic acid (IAA-94) was less effective. NPPB inhibited and partially reversed the vacuolation of HeLa cells and the increase of ion conductivity of polarized Madine Darby canine kidney cell monolayers induced by VacA, while IAA-94 had a weaker effect. We conclude that pore formation by VacA accounts for plasma membrane permeabilization and is required for both cell vacuolation and increase of trans-epithelial conductivity.  相似文献   

8.
Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?   总被引:11,自引:0,他引:11  
Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.  相似文献   

9.
Cytolytic lymphocytes are endowed with a pore-forming protein called perforin. Recently, a cytolytic domain was located in the first 34 residues of the perforin N-terminus. It has been proposed that the first 19 residues are composed of a 3-domain structure including a putative amphipathic beta-sheet and that the 19 residues are sufficient for cytolytic activity. This model has now been tested by synthesizing peptides covering different portions of the N-terminus, and testing their ability to lyse lipid vesicles or increase the conductance of lipid bilayers or plasma membranes. It was found that the putative beta-sheet is indispensable for lytic activity and that the first 19 residues of the N-terminus are required for optimal lytic activity but that shorter peptides, containing only 16 residues, can form pores in lipid bilayers and cell membranes. A putative amphipathic alpha-helix from the central portion of perforin, homologous to complement C9, is nonlytic to lipid vesicles, but it can form pores in lipid bilayers. Taken together, these results support the model that the perforin N-terminus is important in initial pore formation and that the putative alpha-helical domain may be involved in subsequent perforin polymerization into large pores.  相似文献   

10.
Recently, we described a new strategy for the delivery of proteins and peptides into mammalian cells, based on an amphipathic peptide of 21 residues, Pep-1, which was designed on the basis of a protein-interacting domain associated with a nuclear localization sequence and separated by a linker. This peptide carrier constitutes a powerful tool for the delivery of active proteins or peptides both in cultured cells and in vivo, without requiring any covalent coupling. We have examined the conformational states of Pep-1 in its free form and complexed with a cargo peptide and have investigated their ability to interact with phospholipids and the structural consequences of these interactions. From the conformational point of view, Pep-1 behaves significantly differently from other similarly designed cell-penetrating peptides. CD analysis revealed a transition from a nonstructured to a helical conformation upon increase of the concentration. Determination of the structure by NMR showed that in water, its alpha-helical domain extends from residues 4-13. CD and FTIR indicate that Pep-1 adopts a helical conformation in the presence of phospholipids. Adsorption measurements performed at the air-water interface are consistent with the helical form. Pep-1 does not undergo conformational changes upon formation of a particle with a cargo peptide. In contrast, we observe a partial conformational transition when the complex encounters phospholipids. We propose that the membrane crossing process involves formation of a transient transmembrane pore-like structure. Conformational change of Pep-1 is not associated with complexation with its cargo but is induced upon association with the cell membrane.  相似文献   

11.
Energetics of pore formation induced by membrane active peptides   总被引:8,自引:0,他引:8  
Lee MT  Chen FY  Huang HW 《Biochemistry》2004,43(12):3590-3599
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.  相似文献   

12.
Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerization. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence dequenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogs, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA < [Lys5]gA < [Lys1]gA < [Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogs in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogs showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation.  相似文献   

13.
Molecular mechanism of antimicrobial peptides: the origin of cooperativity   总被引:9,自引:0,他引:9  
Based on very extensive studies on four peptides (alamethicin, melittin, magainin and protegrin), we propose a mechanism to explain the cooperativity exhibited by the activities of antimicrobial peptides, namely, a non-linear concentration dependence characterized by a threshold and a rapid rise to saturation as the concentration exceeds the threshold. We first review the structural basis of the mechanism. Experiments showed that peptide binding to lipid bilayers creates two distinct states depending on the bound-peptide to lipid ratio P/L. For P/L below a threshold P/L*, all of the peptide molecules are in the S state that has the following characteristics: (1) there are no pores in the membrane, (2) the axes of helical peptides are oriented parallel to the plane of membrane, and (3) the peptide causes membrane thinning in proportion to P/L. As P/L increases above P/L*, essentially all of the excessive peptide molecules occupy the I state that has the following characteristics: (1) transmembrane pores are detected in the membrane, (2) the axes of helical peptides are perpendicular to the plane of membrane, (3) the membrane thickness remains constant for P/L> or =P/L*. The free energy based on these two states agrees with the data quantitatively. The free energy also explains why lipids of positive curvature (lysoPC) facilitate and lipids of negative curvature (PE) inhibit pore formation.  相似文献   

14.
To enable selection and characterization of highly potent pore-forming peptides, we developed a set of novel assays to probe 1) the potency of peptide pores at very low peptide concentration; 2) the presence or absence of pores in membranes after equilibration; 3) the interbilayer exchangeability of pore-forming peptides; and 4) the degree to which pore-forming peptides disrupt the bilayer organization at equilibrium. Here, we use these assays to characterize, in parallel, six membrane-permeabilizing peptides belonging to multiple classes. We tested the antimicrobial peptides LL37 and dermaseptin S1, the well-known natural lytic peptides melittin and alamethicin, and the very potent lentivirus lytic peptides LLP1 and LLP2 from the cytoplasmic domain of HIV GP41. The assays verified that that the antimicrobial peptides are not potent pore formers, and form only transient permeabilization pathways in bilayers which are not detectable at equilibrium. The other peptides are far more potent and form pores that are still detectable in vesicles after many hours. Among the peptides studies, alamethicin is unique in that it is very potent, readily exchanges between vesicles, and disturbs the local bilayer structure even at very low concentration. The equally potent LLP peptides do not exchange readily and do not perturb the bilayer at equilibrium. Comparison of these classes of pore forming peptides in parallel using the set of assays we developed demonstrates our ability to detect differences in their mechanism of action. Importantly, these assays will be very useful in high-throughput screening where highly potent pore-forming peptides can be selected based on their mechanism of action.  相似文献   

15.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

16.
Bax is a critical regulator of physiological cell death that increases the permeability of the outer mitochondrial membrane and facilitates the release of the so-called apoptotic factors during apoptosis. The molecular mechanism of action is unknown, but it probably involves the formation of partially lipidic pores induced by Bax. To investigate the interaction of Bax with lipid membranes and the physical changes underlying the formation of Bax pores, we used an active peptide derived from helix 5 of this protein (Bax-alpha5) that is able to induce Bax-like pores in lipid bilayers. We report the decrease of line tension due to peptide binding both at the domain interface in phase-separated lipid bilayers and at the pore edge in atomic force microscopy film-rupture experiments. Such a decrease in line tension may be a general strategy of pore-forming peptides and proteins, as it affects the energetics of the pore and stabilizes the open state.  相似文献   

17.
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a beta-barrel pore-like structure, while for Pep-1, it is based on association of helices.  相似文献   

18.
Membrane pores spontaneously formed by antimicrobial peptides in membranes were crystallized for the first time by manipulating the sample hydration and temperature. Neutron diffraction shows that magainins and protegrins form stable pores in fully hydrated fluid membranes. At lower hydration levels or low temperature, the membrane multilayers crystallize. In one crystalline phase, the pores in each bilayer arrange in a regular hexagonal array and the bilayers are stacked into a hexagonal ABC lattice, corresponding to the cubic close-packed structure of spheres. In another crystalline phase, the bilayers are modulated into the rippled multilamellae, corresponding to a 2D monoclinic lattice. The phase diagrams are described. Crystallization of the membrane pores provides possibilities for diffraction studies that might provide useful information on the pore structures.  相似文献   

19.
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a β-barrel pore-like structure, while for Pep-1, it is based on association of helices.  相似文献   

20.
抗菌肽抑菌机制研究进展   总被引:3,自引:0,他引:3  
抗菌肽是由各种无脊椎动物、植物和哺乳动物的组织、细胞产生的丰富且分子多样性的一类物质。它们的氨基酸组成、两亲性、阳离子电荷和它们的大小使它们能够粘附或插入到细胞膜中形成孔洞,也就形成所谓的"木桶式"、"地毯式"和"环孔式"的机制。主要介绍几种不同的诱导细菌孔洞形成、细胞死亡的模型及耐药机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号