首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In E. coli, Se-3 aminopropylselenocysteine or selenahomolysine (SeHL) does not affect intracellular lysine transport, i.e. it cannot bind E. coli lysine transport systems. In CHO cells it inhibits cationic aminoacid transport system, but only in the presence of Na+, this indicating that it behaves like polar neutral aminoacids. On the other hand, it poorly affects leucine transport both in the presence and in the absence of Na+. SeHL is not activated by aminoacyl-tRNA synthetase preparations from bacterial and mammalian sources, thus it cannot be utilized for protein synthesis.  相似文献   

2.
Two lysine transport systems have been identified in E. coli KL16. They differ in their affinity for lysine, one showing a KM of 0.36 microM and the other a KM of 4.7 microM. Different compounds with chemical similarities to lysine were tested for their capacity to interfere with lysine transport. Among these only thialysine and selenalysine competitively inhibit lysine transport. The inhibition is on both transport systems. Thialysine shows a KI of 4 microM for the low affinity system and a KI of 8 microM for the high affinity system. Selenalysine shows values of 6 microM and 12 microM respectively.  相似文献   

3.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

4.
Data reported in this paper show that both lysine transport systems in E. coli KL16 can be repressed by lysine and its isologs, thialysine and selenalysine, whereas they are not repressed by ornithine. The repression is specific on lysine transport systems; it is evident with 0.01 mM lysine or isolog concentration and reaches a maximum with 0.1 mM concentration. By comparing the extent of repression by lysine and its isologs, lysine gives the highest and selenalysine the lowest degree of repression. The shift from the repressed to the depressed state is rather immediate once the amino acid is removed from the culture medium.  相似文献   

5.
The process of arginine-dependent extreme acid resistance (XAR) is one of several decarboxylase-antiporter systems that protects Escherichia coli and possibly other enteric bacteria from exposure to the strong acid environment of the stomach. Arginine-dependent acid resistance depends on an intracellular proton-utilizing arginine alpha-decarboxylase and a membrane transport protein necessary for delivering arginine to and removing agmatine, its decarboxylation product, from the cytoplasm. The arginine system afforded significant protection to wild-type E. coli cells in our acid shock experiments. The gene coding for the transport protein is identified here as a putative membrane protein of unknown function, YjdE, which we now name adiC. Strains from which this gene is deleted fail to mount arginine-dependent XAR, and they cannot perform coupled transport of arginine and agmatine. Homologues of this gene are found in other bacteria in close proximity to homologues of the arginine decarboxylase in a gene arrangement pattern similar to that in E coli. Evidence for a lysine-dependent XAR system in E. coli is also presented. The protection by lysine, however, is milder than that by arginine.  相似文献   

6.
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.  相似文献   

7.
A spontaneous thiosine-resistant mutant of Escherichia coli was shown to have the following characteristics: lowered initial rate of lysine uptake and lowered plateau level of accumulation of exogenous lysine by both the lysine-specific and the general basic amino acid transport systems; altered repressibility of these two lysine transport systems; a derepressed level of lysine decarboxylase; normal growth rate; parental levels of lysyl-transfer ribonucleic acid synthetase and the inducible and constitutive arginine and ornithine decarboxylases. Both the mutant (lysP) and its parent (lysP+) feed a lysine auxotroph when they are plated in proximity on solid medium. However, the feeding response was observable after 1 day less of incubation when the mutant was the feeding strain. Despite the derepressed level of lysine decarboxylase in exponential cultures of the mutant extracts of these cultures had no detectable cadaverine pool. Conjugation experiments established the following gene order: gyrA (formerly nalA) lysP metG his. All thiosine-resistant recombinants assayed showed reduced lysine transport. In many of these recombinants the derepression of lysine decarboxylase was not expressed.  相似文献   

8.
Multiplicity of oligopeptide transport systems in Escherichia coli.   总被引:13,自引:10,他引:3       下载免费PDF全文
The ability of Escherichia coli K-12 4212 to utilize a variety of oligopeptides as sources of required amino acids was examined. Triornithine-resistant mutants of this strain were oligopeptide permease deficient (Opp-) as judged by their inability to utilize (Lys)3 and (Lys)4 as sources of lysine and their resistance to the toxic tripeptide (Val)3. These same mutants were able to grow when Met-Met-Met, Met-Gly-Met, Met-Gly-Gly, Gly-Met-Gly, Gly-Gly-Met, Gly-Met-Met, Met-Met-Gly, or Leu-Leu-Leu were supplied in place of the requisite amino acid. The system mediating the uptake of these peptides, herein designated Opr I, was not able to transport N-alpha-acetylated peptides, nor the tetrapeptides Met-Gly-Met-Met, Met-Met-Gly-Met, or Met-Met-Met-Gly. Competition experiments indicated that trimethionine and trileucine enter E. coli K-12 via either Opp or Opr I. Analogous results were found using the methionine, leucine-requiring auxotroph E. coli B163. It appears that more than one oligopeptide transport system exists in E. coli and that the system mediating peptide uptake is complex.  相似文献   

9.
We have studied the effects of specific amino acid replacements in EF-Tu upon the protein's interactions with guanine nucleotides and elongation factor Ts (EFTs). We found that alterations at the lysine residue of the Asn-Lys-Cys-Asp sequence, the guanine ring-binding sequence, differentially affect the protein's ability to bind guanine nucleotides. Wild type EF-Tu (Lys-136) binds GDP and GTP much more tightly than do many of the altered proteins. Replacing lysine by arginine lowers the protein's affinity for GDP by about 20-fold relative to the change in its affinity for EF-Ts. Substitutions at residue 136 by glutamine (K136Q) and glutamic acid (K136E) further lower the protein relative affinity for GDP by factors of about 4 and 10, respectively. In contrast, replacement of the residue by isoleucine (K136I) eliminates guanine nucleotide binding as well as EF-Ts binding. Apparently, the distortion of this loop by substitution at residue 136 of a bulky hydrophobic residue can hamper the binding for both substrates or disrupt the folding of the protein. All altered proteins except EF-Tu(K136I) are able to bind tRNA(Phe); however, they require much higher concentrations of GTP than wild type EF-Tu. In minimal media, Escherichia coli cells harboring plasmids encoding EF-Tu(K136E) or EF-Tu(K136Q) suffer growth retardation relative to cells bearing the same plasmid encoding wild type EF-Tu. Co-transformation of these cells with a compatible plasmid bearing the EF-Ts gene reverses this growth problem. The growth retardation effect of some of the altered proteins can be explained by their sequestering EF-Ts. These results indicate that EF-Ts is essential to the growth of E. coli and suggest a technique for studying EF-Ts mutants as well as for identifying other guanine nucleotide exchange enzymes.  相似文献   

10.
11.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

12.
Specialized peptide transport system in Escherichia coli.   总被引:10,自引:9,他引:1       下载免费PDF全文
Trileucine is utilized as a source of leucine for growth of strains of Escherichia coli K-12 that are deficient in the oligopeptide transport system (Opp). Trithreonine is toxic to E. coli K-12. Opp- mutants of E. coli K-12 retain complete sensitivity to this tripeptide. Moreover, E. coli W, which is resistant to trithreonine, can utlize this tripeptide as a threonine source and this capability is fully maintained in E. coli W (Opp-). A spontaneous trithreonine-resistant mutant of E. coli K-12 (Opp-) has been isolated that has an impaired growth response to trileucine and is resistant to trithreonine. Trileucine competes with the uptake of trithreonine as measured by its ability to relieve trithreonine toxicity in E. coli K-12. It is concluded that trileucine as well as trithreonine are transported into E. coli K-12 or W by a common uptake system that is distinct from the Opp system. Trimethionine can act as a competitor of trileucine or trithreonine-supported growth and as an antagonist of trithreonine toxicity in Opp- mutants. It is concluded that trimethionine is recognized by the trileucine-trithreonine transport system. Trithreonine, trimethionine, and trileucine are also transported by the Opp system, as they all relieve triornithine toxicity towards E. coli W and compete with tetralysine utilization as lysine source for growth of a lysine auxotroph of this strain.  相似文献   

13.
14.
Porphobilinogen synthase (PBGS) is a homo-octameric protein that catalyzes the complex asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). The only characterized intermediate in the PBGS-catalyzed reaction is a Schiff base that forms between the first ALA that binds and a conserved lysine, which in Escherichia coli PBGS is Lys-246 and in human PBGS is Lys-252. In this study, E. coli PBGS mutants K246H, K246M, K246W, K246N, and K246G and human PBGS mutant K252G were characterized. Alterations to this lysine result in a disabled but not totally inactive protein suggesting an alternate mechanism in which proximity and orientation are major catalytic devices. (13)C NMR studies of [3,5-(13)C]porphobilinogen bound at the active sites of the E. coli PBGS and the mutants show only minor chemical shift differences, i.e. environmental alterations. Mammalian PBGS is established to have four functional active sites, whereas the crystal structure of E. coli PBGS shows eight spatially distinct and structurally equivalent subunits. Biochemical data for E. coli PBGS have been interpreted to support both four and eight active sites. A unifying hypothesis is that formation of the Schiff base between this lysine and ALA triggers a conformational change that results in asymmetry. Product binding studies with wild-type E. coli PBGS and K246G demonstrate that both bind porphobilinogen at four per octamer although the latter cannot form the Schiff base from substrate. Thus, formation of the lysine to ALA Schiff base is not required to initiate the asymmetry that results in half-site reactivity.  相似文献   

15.
16.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   

17.
Three N-terminal basic residues of Tn5 transposase, which are associated with proteolytic cleavages by Escherichia coli proteinases, were mutated to glutamine residues with the goal of producing more stable transposase molecules. Mutation of either arginine 30 or arginine 62 to glutamine produced transposase molecules that were more stable toward E. coli proteinases than the parent hyperactive Tn5 transposase, however, they were inactive in vivo. In vitro analysis revealed these mutants were inactive, because both Arg(30) and Arg(62) are required for formation of the paired ends complexes when the transposon is attached to the donor backbone. These results suggest Arg(30) and Arg(62) play critical roles in DNA binding and/or synaptic complex formation. Mutation of lysine 40 to glutamine did not increase the overall stability of the transposase to E. coli proteinases. This mutant transposase was only about 1% as active as the parent hyperactive transposase in vivo; however, it retained nearly full activity in vitro. These results suggest that lysine 40 is important for a step in the transposition mechanism that is bypassed in the in vitro assay system, such as the removal of the transposase molecule from DNA following strand transfer.  相似文献   

18.
The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).  相似文献   

19.
Relationships between adenomatous polyposis coli (APC) mutations, BRAF V600E mutations, and the CpG island methylator phenotype (CIMP) in colon cancer have not been explored. In addition, controversies exist about the proportion of tumors with APC mutations in the mutation cluster region (MCR); how commonly APC, Ki-ras, and p53 mutations occur in the same tumor; and whether APC mutations occur in sporadic microsatellite-unstable tumors. The APC gene was therefore sequenced in 90 colonic adenocarcinomas previously evaluated for CIMP, microsatellite instability, BRAF, Ki-ras, and p53. APC mutations were inversely related to BRAF mutations (P = 0.0003) and CIMP (P = 0.02) and directly related to p53 and Ki-ras mutations (P = 0.04). Slightly more than half of APC mutations occurred outside of the MCR, and frameshift mutations were more likely than nonsense mutations to occur in the MCR (21 of 28 versus 12 of 40, P = 0.0003). APC mutations were found in sporadic microsatellite-unstable tumors and were more likely to be frameshifts in short nucleotide repeats (P = 0.007). The occurrence of APC, Ki-ras, and p53 mutations together in the same tumor was uncommon (11.1%). In conclusion, an analysis restricted to the MCR will miss more than half of APC mutations as well as mischaracterize their mutational spectrum. The conventional wisdom that most colon cancers contain APC, Ki-ras, and p53 mutations is incorrect. Microsatellite instability may precede acquisition of APC mutations in sporadic microsatellite-unstable tumors. The relationships of APC mutations to other genetic and epigenetic alterations add to the already impressive genetic heterogeneity of colon cancer.  相似文献   

20.
Microbiological assays involving Escherichia coli lysine auxotrophs must be optimized to facilitate routine use. Our objectives in this study were to characterize growth of an auxotrophic E. coli lysine mutant (American Type Culture Collection strain #23812) and examine the effect of agitation on E. coli mutant growth. A defined minimal salts basal medium was used and supplemented with various lysine concentrations. The E. coli lysine auxotroph responded to increasing lysine concentration with increasing optical density. When maximum optical density (MOD) was determined for the auxotroph, a linear increase was obtained as lysine concentrations were increased (R2± 0.96) for both agitation and static cultures. Growth rates were not significantly (p > 0.05) affected by lysine concentrations, cultural conditions or their combined effect. However, growth with agitation significantly (p < 0.05) reduced the assay time by shortening the lag phase and causing stationary phase to occur earlier. The values of R2 (± 0.96) relatively remained constant over the range while the bacterial population were in the stationary phase. In conclusion, the lysine growth assay using the E. coli lysine auxotroph can be made more rapid by agitating the culture during incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号