首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium plays a variety of significant roles in the life cycle of plants. This review describes a brief summary of several examples of such roles in an attempt to provide some common ground relevant to the roles of calcium, with emphasis on the coupling between various stimuli and their respective responses. The selected topics include the regulation of turgor pressure, tropic responses, the cell cycle, and cell motility.  相似文献   

2.
Wherrett T  Shabala S  Pottosin I 《FEBS letters》2005,579(30):6890-6894
Patch-clamp experiments revealed that near isogenic ET8 (Al-tolerant) and ES8 (Al-sensitive) wheat cultivars differed significantly in slow vacuolar channel properties. Under control conditions, whole vacuole currents displayed faster deactivation in ES8. Application of 1.4 microM vacuolar Al3+ caused a 20 mV increase in the activation threshold and slowed activation kinetics in ET8 but not in ES8. Channel density was about 30% higher in ES8 than ET8, and was not altered by 24 h aluminium pre-treatment. However, the activation threshold was reduced in Al-pre-treated ES8. Overall, our data suggests that Alt1 locus may control more than the plasma membrane malate channel in wheat.  相似文献   

3.
Calcium in plants   总被引:29,自引:0,他引:29  
Calcium is an essential plant nutrient. It is required for various structural roles in the cell wall and membranes, it is a counter-cation for inorganic and organic anions in the vacuole, and the cytosolic Ca2+ concentration ([Ca2+]cyt) is an obligate intracellular messenger coordinating responses to numerous developmental cues and environmental challenges. This article provides an overview of the nutritional requirements of different plants for Ca, and how this impacts on natural flora and the Ca content of crops. It also reviews recent work on (a) the mechanisms of Ca2+ transport across cellular membranes, (b) understanding the origins and specificity of [Ca2+]cyt signals and (c) characterizing the cellular [Ca2+]cyt-sensors (such as calmodulin, calcineurin B-like proteins and calcium-dependent protein kinases) that allow plant cells to respond appropriately to [Ca2+]cyt signals.  相似文献   

4.
Modulation of calcium signalling by mitochondria   总被引:1,自引:0,他引:1  
Ciara Walsh 《BBA》2009,1787(11):1374-1382
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca2+ signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species — which in turn modulate components of the Ca2+ signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca2+ pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca2+ via the mitochondrial Ca2+ uniporter or transporting Ca2+ from the interior of the organelle into the cytosol by means of Na+/Ca2+ or H+/Ca2+ exchangers. Considerable progress in understanding the relationship between Ca2+ signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.  相似文献   

5.
6.
Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases   总被引:2,自引:0,他引:2  
Much attention has been paid to nitric oxide (NO) research since its discovery as a physiological mediator of plant defence responses. In recent years, newer roles have been attributed to NO, ranging from root development to stomatal closure. The molecular mechanisms underlying NO action in plants are just begun to emerge. The currently available data illustrate that NO can directly influence the activity of target proteins through nitrosylation and has the capacity to act as a Ca2+-mobilizing intracellular messenger. The interplay between NO and Ca2+ has important functional implications, expanding and enriching the possibilities for modulating transduction processes. Furthermore, protein kinases regulated through NO-dependent mechanisms are being discovered, offering fresh perspective on processes such as stress tolerance.  相似文献   

7.
The changes in cytosolic Ca2+ levels play an important role in the jasmonic acid (JA) signal transduction pathway. We demonstrate that an increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis leaf cells was affected by pretreatment with heparin and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8). With pretreatment of heparin, an antagonist of inositol 1,4,5-trisphosphate (IP3) sensitive channels, the basal and JA induced fluorescence of [Ca2+]cyt were both decreased. Furthermore, heparin and TMB-8, another antagonist of IP3 sensitive channels, enhanced the JA-induced gene expression of JR1. These data suggest that there may be a fine tune control system between extracellular and intracellular Ca2+ mobilization in JA signaling pathway.  相似文献   

8.
We investigated the roles of catalase (CAT) in abscisic acid (ABA)-induced stomatal closure using a cat2 mutant and an inhibitor of CAT, 3-aminotriazole (AT). Constitutive reactive oxygen species (ROS) accumulation due to the CAT2 mutation and AT treatment did not affect stomatal aperture in the absence of ABA, whereas ABA-induced stomatal closure, ROS production, and [Ca2+]cyt oscillation were enhanced.  相似文献   

9.
Li J  Lee S  Choi SY  Lee SJ  Oh SB  Lee JH  Chung SC  Kim JS  Lee JH  Park K 《Life sciences》2006,79(26):2441-2447
Pilocarpine has been used as a choice of drugs for treatment of impaired salivary flow. Although considerable data are available as to the stimulatory effect of pilocarpine on the salivary secretion in human, its underlying mechanism, at the cellular level, has not been rigorously studied. In this experiment, we studied the effect of pilocarpine on the ion channel activity, cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and aquaporin (AQP)-5 expression, which play key roles in the secretary process and determine the capacity of fluid secretion. In human submandibular gland (SMG) acinar cells, 10(-5) M pilocarpine activated the outward rectifying-current, which was predominantly K(+) selective in the whole cell patch clamp study. The pilocarpine increased [Ca(2+)](i) in a concentration-dependent manner in the range of 10(-6) M to 10(-4) M. We found that both increases of [Ca(2+)](i) and outward rectifying- K(+) current were inhibited by 10(-5) M U-73122, a specific phospholipase C inhibitor. The magnitudes of pilocarpine-induced [Ca(2+)](i) transients were approximately 55% lower than those with the same concentration of carbachol (CCh). Pilocarpine also increased the amount of AQP-5 protein in the apical membrane (APM) in human SMG acinar cells. Our results suggest that pilocarpine induce salivary secretions in human by activating K(+) channels, increasing [Ca(2+)](i) via phospholipase C dependent pathway, and increasing AQP-5 protein expression in the APM of SMG acinar cells.  相似文献   

10.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

11.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

12.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   

13.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   

14.
Aires V  Hichami A  Boulay G  Khan NA 《Biochimie》2007,89(8):926-937
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.  相似文献   

15.
Higher plants respond to environmental stresses by a sequence of reactions which include the reduction of growth by affecting cell division. It has been shown that calcium ions plays a role as a second messenger in mediating various defence responses under environmental stresses. In this study, the role of calcium ions on cell cycle progression under abiotic stresses has been examined in tobacco BY-2 suspension culture cells. Using synchronized BY-2 cells expressing the endogenous calcium sensor aequorin as experimental system, we could show that oxidative and hypoosmotic stress both induce an increase of intracellular calcium and cause a delay of the cell cycle. The inhibitory effect of these abiotic stress stimuli on cell cycle progression could be mimicked by increasing the intracellular calcium concentration via application of an external electrical field. Likewise, depletion of calcium ions in the culture medium suppressed the effect of the stimuli tested. These results demonstrate that calcium signalling is involved in the regulation of cell cycle progression in response to abiotic stress.  相似文献   

16.
Persistent tumour necrosis factor alpha (TNF-alpha) exposure uncouples proximal T-cell receptor (TCR)-signalling events. Here, we demonstrate that chronic TNF-alpha exposure also attenuates signalling distal to the TCR, by specifically inhibiting Ca2+ influx evoked by thapsigargin in CD4+ T-cells. Mitogen-induced Ca2+ responses were impaired in a dose dependent manner, and TCR-induced Ca2+ responses were also significantly reduced. The impairment of Ca2+ influx strongly correlated with poor function as proliferative responses to both mitogen and anti-CD3/CD28 stimulation were suppressed. Our findings show that persistent TNF-alpha exposure of T-cells specifically inhibits store operated Ca2+ influx. This may affect gene activation and contribute to the poor T-cell function in chronic inflammatory disease.  相似文献   

17.
The interaction between neutrophils and endothelial cells (ECs) is of great importance in many physiological and pathological progresses. Although cilostazol (CLZ), a novel selective phosphodiesterase (PDE) type 3 inhibitor, has been proved to be useful in vasodilatation and inhibition of platelet aggregation, its effect on adhesion is not clearly known. In this study, we examined the effects and investigated the mechanisms of cilostazol on neutrophil adhesion to human umbilical endothelial cells (HUVECs) triggered by N-formyl-methionyl-leucyl-phenylal-anine (FMLP), a chemotactic peptide. The soluble vascular cell adhesive molecule-1 (sVCAM-1) release from FMLP (10 microM)-stimulated HUVECs was determined by ELISA kits. Fluo-2, a fluorescent indicator, was used to investigate intracellular free calcium concentration ([Ca2+]i) in HUVECs. HL-60 cells were induced to be neutrophilic by DMSO and loaded with Fluo-3, another fluorescent indicator, to detect [Ca2+]i, and CLA was used as a chemiluminescent indicator to determine superoxide production in neutrophilic cells. The result showed that CLZ (1-100 microM) significantly inhibited neutrophil adhesion to FMLP-stimulated HUVECs. In HUVECs, CLZ obviously downregulated sVCAM-1 level, while it had no meaningful influence [Ca2)]i. But in neutrophils, FMLP-activated superoxide generation and [Ca2+]i increase were found being inhibited by exposure to CLZ . Furthermore, we also demonstrated that Ca2+ increase was preceded to the superoxide generation in neutrophils. The results suggest that CLZ involves in adhesion reactions between neutrophil and ECs, partly via VCAM-1 expression in ECs, and decreasing [Ca2+]i induced activation of neutrophils, which means a lot to prevent atherosclerosis and other cardiovascular diseases.  相似文献   

18.
Summary 1. Whole-cell patch clamp experiments were performed on rat dorsal root ganglion (DRG) neurons to investigate the actions of various combinations of Pb2+, Zn2+, and Al3+ on voltage-activated calcium channel currents (VACCCs).2. Each of these metals has been shown to reduce VACCCs.3. We investigated the effects of simultaneous application of two cations in the range of their IC50 values. For all possible combinations (Pb2+/Zu2+, Zn2+/Al3+, Al3+/Pb2+), independent of the order of application, we found additive actions on VACCCs.4. We observed a 75% (±9%) block of the control current when two cations were applied simultaneously. This observation is consistent with both, an action of two metals at the same site as well as independent actions at different locations of the ion channel.5. The additivity of the effects should be taken into account for questions of public health and the assessment of threshold limits in cases of environmental contamination.  相似文献   

19.
We have studied acute effects of the PPARgamma agonist pioglitazone in vitro on human islets from both non-diabetic and type 2 diabetic subjects. In 5 mM glucose, pioglitazone caused a transient increase in insulin secretion in non-diabetic, but not diabetic, islets. Continuous presence of the drug suppressed insulin release in both non-diabetic and diabetic islets. In islets from non-diabetic subjects, both high glucose and tolbutamide-stimulated insulin secretion was inhibited by pioglitazone. When islets were continuously perifused with 5 mM glucose, short-term pretreatment with pioglitazone caused approximately 2-fold increase in insulin secretion after drug withdrawal. Pioglitazone pretreatment of diabetic islets restored their glucose sensitivity. Examination of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in non-diabetic islets revealed slight Ca(2+) transient by pioglitazone at 3 mM glucose with no significant changes at high glucose. Our data suggest that short-term pretreatment with pioglitazone primes both healthy and diabetic human islets for enhanced glucose-sensitive insulin secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号