首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
-Galactosidase was immobilized in a crosslinked poly(N-isopropylacrylamide-co-acrylamide) hydrogel which exhibits an LCST(lower critical solution temperature) behavior. The hydrogel collapses above the LCST, and expands below the LCST. The temperature-dependent phase transition was around 37 °C. The stability of immobilized enzyme was investigated at different temperatures which allow different degrees of collapse in the hydrogel matrix. It was hypothesized that the immobilzed enzyme is more stable in the collapsed matrix due to the physical restraint imposed on the enzyme entrapped.  相似文献   

2.
Studies were carried out on the interactions of uncharged latex beads (0.76 micrometer) with baby hamster kidney cells. Binding of beads to the cells occurred if the beads were coated by cold insoluble globulin (CIG) (plasma fibronectin) but not if the beads were coated by bovine albumin. Bovine albumin-coated beads did not bind to the cells even in the presence of excess CIG in the incubation medium. Binding of beads occurred randomly over the entire surfaces of cells in suspension. However, cell receptors for CIG beads were no longer detectable on the upper surface of cells spread onCIG-coated tissue culture dishes. Binding of CIG beads to cells occurred at all temperatures tested from 4 degrees to 37 degrees C but the rate was lowest at 4 degrees C. At 37 degrees C, binding was accompanied by endocytosis and the beads were found inside vesicles which appeared to be lysosomes. There was also release of radioactivity from radiolabeled CIG beads during incubation with the cells at 37 degrees C. Binding of CIG beads to cells did not require divalent cations. Finally, the cell receptor for CIG beads was lost after cell trypsinization. The data are discussed in terms of current ideas about the basis for cell adhesion.  相似文献   

3.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

4.
In this study, specific interactions between immobilized RGDS (Arg-Gly-Asp-Ser) cell adhesion peptides and cell integrin receptors located on cell membranes are controlled in vitro using stimuli-responsive polymer surface chemistry. Temperature-responsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(IPAAm-co-CIPAAm)) copolymer grafted onto tissue culture grade polystyrene (TCPS) dishes permits RGDS immobilization. These surfaces facilitate the spreading of human umbilical vein endothelial cells (HUVECs) without serum depending on RGDS surface content at 37 degrees C (above the lower critical solution temperature, LCST, of the copolymer). Moreover, cells spread on RGDS-immobilized surfaces at 37 degrees C detach spontaneously by lowering culture temperature below the LCST as hydrated grafted copolymer chains dissociate immobilized RGDS from cell integrins. These cell lifting behaviors upon hydration are similar to results using soluble RGDS in culture as a competitive substitution for immobilized ligands. Binding of cell integrins to immobilized RGDS on cell culture substrates can be reversed spontaneously using mild environmental stimulation, such as temperature, without enzymatic or chemical treatment. These findings are important for control of specific interactions between proteins and cells, and subsequent "on-off" regulation of their function. Furthermore, the method allows serum-free cell culture and trypsin-free cell harvest, essentially removing mammalian-sourced components from the culture process.  相似文献   

5.
A novel method to prepare multicellular spheroids from varied cell types   总被引:1,自引:0,他引:1  
A simple method for preparing multicellular spheroids from varied cell types has been successfully developed by using a stepwise gradient surface in cell attachability or detachability. The surface was composed of poly-N-isopropylacrylamide (PNIPAAm), a temperature responsive polymer, as a cell detaching component, and collagen as a cell attaching component. The surface functions as a culture substratum at 37 degrees C; then, when lowering the temperature of culture medium, the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature (LCST; about 30 degrees C), but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. The stepwise gradient surface which consisted of six different sectors was prepared by exposing a surface of the PNIPAAm-collagen mixture to ultraviolet (UV) irradiation six times using a photomask, sliding the hole position in the photomask, and changing the energy of UV irradiation. This was because crosslinking of collagen depended on the energy of UV irradiation, then, cell attachability to and detachability from the surface were tightly controlled by changing the energy.The stepwise gradient surface allowed us to easily determine optimal surface conditions to obtain good cell attachment and detachment as a self-supporting sheet from the surface to prepare multicellular spheroids. According to the evaluation of the attachability and detachability of 23 cell types, the optimal surface condition remarkably depended on each cell type. The detached cells under optimal surface conditions, including fibroblasts, osteoblastic cells, smooth muscle cells, and measangial cells, which were very difficult to form spherioids using conventional methods, were able to form multicellular spheroids. The results clearly demonstrate that the above-described method for preparing multicellular spheroids can be applied to varied cell types. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Measurement of phagocytosis using fluorescent latex beads   总被引:2,自引:0,他引:2  
Fluorescent monodisperse latex beads and a computer-centered spectrofluorimeter were used to devise a sensitive new assay for phagocytosis. LM fibroblasts, a transformed cell line with a high endocytic rate, were exposed to fluoresbrite beads and the following parameters were investigated: incubation time, incubation temperature and bead/cell ratio. The bead uptake was linear for 60 min over a wide range of bead/cell ratios up to 130 beads/cell. Phagocytosis was inhibited at 4 degrees C, by incubation in the presence of colchicine, and by glucose deprivation. Scanning and transmission electron microscopy were used to confirm that at 37 degrees C both bead adsorption and internalization occurred while at 4 degrees C only bead adsorption but not endocytosis occurred. Large bead sizes (0.86 and 1.72 micrometer diameter) were most useful due to higher fluorescence and higher signal to noise ratios than smaller beads (0.25 and 0.57 micrometer diameter). Beads (0.86 micrometer diameter) were taken up at a rate of 4.4 beads/cell/h at 37 degrees C when a bead/cell ratio of 70 was used. The uptake was zero when assayed at zero time. These criteria establish that fluoresbrite beads provide a useful new fluorimetric assay for phagocytosis.  相似文献   

7.
A novel technique and instrumented device were developed to harvest target cells from multicellular mixture of different cell types under a microscope. The principle of the technique is that cells cultured on a thermoresponsive-substance-coated dish were detached by a region-specific cooling device and simultaneously harvested using a micropipette, both of which were assembled in an inverted microscope. Thermoresponsive coating consists of the mixture of poly(N-isopropylacrylamide) (PNIPAAm) and PNIPAAm-grafted gelatin. The former non-cell-adhesive polymer dissolves below at 32.1 degrees C in water and precipitates over that temperature (called lower critical solution temperature, LCST), and the latter cell-adhesive polymer has LCST of 34.1 degrees C. The appropriate mixing ratio of these thermoresponsive polymers exhibited high cell adhesion at physiological temperature and complete cell detachment at room temperature. A device developed as to cool at only a tiny area of the bottom of the dish, beneath which a cell that was targeted under a microscope, was assembled in a microscope. It was demonstrated that single cell or two cells that adhered to each other was detached from the surface and harvested by a micropipette within approximately 30s.  相似文献   

8.
Pegg DE 《Cryobiology》2002,44(1):46-53
This paper reports the cryopreservation of an immortalized human endothelial cell line (ECV304), either as a single cell suspension or as a confluent layer on microcarrier beads. Cell suspensions were exposed to 10% w/w dimethyl sulfoxide in a high-potassium solution (CPTes) at 0 degrees C. The cells were then cooled to -60 degrees C at controlled rates between 0.3 and 500 degrees C/min and stored below -180 degrees C. Samples were thawed in a 37 degrees C water bath and the cryoprotectant was removed by serial dilution at 22 degrees C over 6 min. The recovery of cell suspensions was assayed by culturing aliquots in 24-well plates for 7-9 days and counting the number of colonies that contained >25 cells. Maximum survival was 45-50% at cooling rates of 0.3, 1.0, and 10 degrees C/min, but decreased to 20% at 50 degrees C/min and to <1% at 500 degrees C/min. Biosilon microcarrier beads were used for the attached cells. Confluent beads were cryopreserved by exactly the same technique and cell function was assayed by measuring active amino acid (leucine) transport at 37 degrees C. Control, untreated confluent beads gave approximately 73% of control uptake and negative controls (frozen without cryoprotectant) gave approximately 4% uptake. The cells attached to beads showed percentage uptakes that were numerically similar to the survival of cells in suspension at cooling rates between 10 and 500 degrees C/min, but at lower cooling rates the recovery of attached cells increased to 70% at 1 degrees C/min and to 85% at 0.3 degrees C/min. These results indicate a marked difference in the effect of cooling rate on ECV304 cells depending upon attachment.  相似文献   

9.
Xu FJ  Zhong SP  Yung LY  Kang ET  Neoh KG 《Biomacromolecules》2004,5(6):2392-2403
A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si-H) surface. Well-defined functional polymer-Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm-PEGMA copolymers and block copolymers on Si-H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a "controlled" process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 degrees C [above the lower critical solution temperature (LCST, approximately 32 degrees C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The "active" chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.  相似文献   

10.
A simple method to prepare size-regulated spheroids has been successfully developed by combining a temperature responsive polymer, poly-N-isopropyl-acrylamide (PNIPAAm), conjugated with collagen and ultraviolet (UV) irradiation with photomasks. The coating layer composed of PNIPAAm conjugated with collagen functions as a cell substratum at 37 degrees C, then when lowering the temperature of culture medium the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature LCST; about 30 degrees C, but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. On the other hand, UV effectively immobilized collagen in the coating layer because UV generates crosslinkages in collagen molecules. Crosslinkages were quantitatively introduced by controlling the energy of UV-irradiation thus the ability of human dermal fibroblasts to attach to and detach from the surface was tightly controlled. When the collagen content in the coating layer was 9 mug/cm(2) (collagen ratio, 4.5%), UV-irradiation energy of 2000 J/m(2) was suitable to obtain 100% of the attachability and detachability. However, the cells did not attach to the nonirradiated surface at this collagen content because insufficient collagen was immobilized. Using photomakes to apply UV-irradiation, it was possible to obtain cell-adhesive areas(irradiated areas) and nonadhesive areas (nonirradiated areas) on the same surface. Consequently, spheroids of any size and in any number from one dish were prepared. The viability of cells in spheroids 350 mum in diameter was maintained at a high level for 28 days; however, viability of spheroids 800 mum in diameter rapidly decreased for 2 days. The size was very important to maintain the viability. This novel method is useful to develop size-regulated spheroids for different applications; for example, in toxicology tests. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co- N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide)[P(NIPAAm-co-DMAAm)-b-PLGA] are fabricated and used as a carrier for the controlled delivery of paclitaxel. Paclitaxel is efficiently loaded into the micelles by a membrane dialysis method. The lower critical solution temperature (LCST) of the micelles is 39.0 degrees C in PBS. Encapsulation efficiency and loading level of paclitaxel are affected by the initial loading level of paclitaxel, fabrication temperature and polymer composition. The blank and paclitaxel-loaded micelles are characterized by particle size analysis (DLS), morphology (TEM and AFM) and paclitaxel distribution (NMR, DSC and WAXRD). The micelles are spherical in shape, having an average size less than 130 nm. Paclitaxel is molecularly distributed within the core of micelles. Sustained release of paclitaxel is achieved, which is much faster at a temperature above the LCST than at the normal body temperature (37 degrees C). Cytotoxicity of free paclitaxel and paclitaxel-loaded micelles against a human breast carcinoma cell line (MDA-MB-435S) is studied at different temperatures. The cytotoxicity of the paclitaxol-loaded micelles is greater as compared to free paclitaxel. Enhanced cytotoxicity is achieved by the paclitaxol-loaded micelles when the environmental temperature increases slightly above the LCST. Paclitaxel-loaded P(NIPAAm-co-DMAAm)-b-PLGA micelles may provide a good formulation for cancer therapy.  相似文献   

12.
The production of a mixed lactic culture containing Lactococcus lactis subsp. lactis biovar. diacetylactis MD and Bifidobacterium longum ATCC 15707 was studied during a 17-day continuous immobilized-cell culture at different temperatures between 32 and 37 degrees C. The two-stage fermentation system was composed of a first reactor (R1) containing cells of the two strains separately immobilized in kappa-carrageenan/locust bean gum gel beads and a second reactor (R2) operated with free cells released from the first reactor. The system allowed continuous production of a concentrated mixed culture with a strain ratio whose composition depended on temperature and fermentation time. A stable mixed culture (with a 22:1 ratio of L. diacetylactis and B. longum) was produced at 35 degrees C in the effluent of R2, whereas the mixed culture was rapidly unbalanced in favor of B. longum at a higher temperature (37 degrees C) or L. diacetylactis at a lower temperature (32 degrees C). Strain redistribution in beads originally immobilizing pure cultures of L. diacetylactis or B. longum was observed. At the end of culture, the strain ratio (7:1 L. diacetylactis/B. longum) in bulk bead samples was similar to that of individual beads. The determination of the spatial distribution of the two strains in gel beads by immunofluorescence and confocal laser-scanning microscopy showed that bead cross-contamination was limited to a 100 microm peripheral layer. Data from this study validate a previous model for population dynamics and cell release in gel beads during mixed immobilized-cell cultures.  相似文献   

13.
B lymphocytes collected from normal ICR Swiss mouse spleens were exposed in vitro in a Crawford cell to 147-MHz radiofrequency (RF) radiation, amplitude modulated by a 9-, 16-, or 60-Hz sine wave. The power densities ranged between 0.11 and 48 mW/cm2. The irradiated samples and the controls were maintained at 37 degrees C or 42 degrees C, with temperature variations less than 0.1 degrees C. Immediately after a 30-minute exposure, the distribution of antigen-antibody (Ag-Ab) complexes on the cell surface was evaluated at 37 degrees C by immunofluorescence. Under normal conditions (37 degrees C, no RF), Ag-Ab complexes are regrouped into a polar cap by an energy-dependent process. Our results demonstrate that the irradiated cells and the nonirradiated controls capped Ag-Ab complexes equally well after exposure at 37 degrees C. Capping was equally inhibited at 42 degrees C in both the controls and irradiated cells. No statistically significant differences in capping were observed between the RF-exposed and control samples at any of the modulation frequencies and power densities employed as long as both preparations were maintained at the same temperature.  相似文献   

14.
Liu SQ  Yang YY  Liu XM  Tong YW 《Biomacromolecules》2003,4(6):1784-1793
Temperature-sensitive diblock copolymers, poly(N-isopropylacrylamide)-b-poly(D,L-lactide) (PNIPAAm-b-PLA) with different PNIPAAm contents were synthesized and utilized to fabricate microspheres containing bovine serum albumin (BSA, as a model protein) by a water-in-oil-in-water double emulsion solvent evaporation process. XPS analysis showed that PNIPAAm was a dominant component of the microspheres surface. BSA was well entrapped within the microspheres, and more than 90% encapsulation efficiency was achieved. The in vitro degradation behavior of microspheres was investigated using SEM, NMR, FTIR, and GPC. It was found that the microspheres were erodible, and polymer degradation occurred in the PLA block. Degradation of PLA was completed after 5 months incubation in PBS (pH 7.4) at 37 degrees C. A PVA concentration of 0.2% (w/v) in the internal aqueous phase yielded the microspheres with an interconnected porous structure, resulting in fast matrix erosion and sustained BSA release. However, 0.05% PVA produced the microspheres with a multivesicular internal structure wrapped with a dense skin layer, resulting in lower erosion rate and a biphasic release pattern of BSA that was characterized with an initial burst followed by a nonrelease phase. The microspheres made from PNIPAAm-b-PLA with a higher portion of PNIPAAm provided faster BSA release. In addition, BSA release from the microspheres responded to the external temperature changes. BSA release was slower at 37 degrees C (above the LCST) than at a temperature below the LCST. The microspheres fabricated with PNIPAAm-b-PLA having a 1:5 molar ratio of PNIPAAm to PLA and 0.2% (w/v) PVA in the internal aqueous phase provided a sustained release of BSA over 3 weeks in PBS (pH 7.4) at 37 degrees C.  相似文献   

15.
Erythrocytes were bound to a lectin-coated surface; the multivalent attachment to this surface resulted in a severe deformation of the cells and an alteration in the cellular phospholipid metabolism. Human erythrocytes were allowed to bind for 20 min at 20 degrees C to polystyrene beads coated with wheat germ agglutinin (WGA beads). The bound erythrocytes were then lysed to produce stroma bound to WGA beads. Control stroma and stroma-WGA beads were incubated at 37 degrees C with gamma-32P-ATP to examine the phospholipid labeling patterns. The control stroma incorporated 32P-label into phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate, in agreement with earlier studies. However, the stroma-WGA beads showed incorporation of 32P-label into phosphatidic acid in addition to that in the phosphoinositides. The quantity of 32P-phosphatidic acid produced during the 20-min assay was 3.23 +/- 0.84 (n = 7) picomoles/micrograms stromal cholesterol; the amount synthesized, however, was dependent on the procedure used to prepare the stroma-WGA beads. If the erythrocytes were bound to the WGA beads at 0 degrees C instead of 20 degrees C, the quantity of 32P-phosphatidic acid produced during the subsequent 37 degrees C assay with gamma-32P-ATP was decreased 4.2 fold; the phosphoinositide labeling pattern was unchanged. In addition, when the time for binding of intact erythrocytes to the WGA beads was varied from 1 to 20 minutes, there was a time-dependent increase in the amount of 32P-phosphatidic acid produced. This induction of phosphatidic acid synthesis could not be duplicated with fluid phase WGA. Therefore, the multivalent binding of intact erythrocytes to WGA beads causes an alteration in phospholipid metabolism.  相似文献   

16.
Temperature shift conditions of 0 degree to 22 degrees C or 0 degree to 37 degrees C induce the formation and shedding of membrane vesicles (MV) from P815 tumor cell surfaces. When the MV shedding process takes place at 22 degrees C it occurs without changes in cell surface membrane permeability, whereas at 37 degrees C, changes in permeability to 51Cr and trypan blue do occur, thus mimicking the lymphocyte-mediated lytic process of tumor cells [1]. The present studies demonstrate that nuclear DNA fragmentation also occurs in both 0 degree to 22 degrees C and 0 degree to 37 degrees C temperature shifts but cell surface membrane permeability to DNA fragments occurs only in the latter condition, i.e., 0 degree to 37 degrees C. The microtubule-stabilizing agent deuterium oxide (D2O) inhibited the MV shedding process, the changes in membrane permeability, and DNA fragmentation. When P815 cells which had been induced to shed MV by the 0 degree to 22 degrees C temperature shift were labeled with 51Cr and used as targets for alloimmune lymphocytes, they were found to be as susceptible to T-cell lysis as control P815 cells. This result indicates that the lytic effect of alloimmune T lymphocytes can be exerted at the target cell surface membrane level independently of nuclear DNA fragmentation.  相似文献   

17.
Egg yolk phosphatidylcholine liposomes modified with a copolymer of N-acryloylpyrrolidine and N-isopropylacrylamide having a lower critical solution temperature at ca. 40 degrees C were prepared and an effect of temperature on their interaction with CV1 cells was investigated. The unmodified liposomes were taken up by the cells approximately to the same extent after 3 h incubation at 37 and 42 degrees C. In contrast, uptake of the polymer-modified liposomes by CV1 cells decreased slightly at 37 degrees C but increased greatly at 42 degrees C, compared to the unmodified liposomes. Proliferation of the cells was partly prohibited by the incubation with the unmodified liposomes encapsulating methotrexate at 37 and 42 degrees C. The treatment with the polymer-modified liposomes containing methotrexate at 37 degrees C hardly effected the cell growth. However, the treatment at 42 degrees C inhibited the cell growth completely. It is considered that the highly hydrated polymer chains attached to the liposome surface suppressed the liposome-cell interaction below the lower critical solution temperature of the polymer but the dehydrated polymer chains enhanced the interaction above this temperature. Because interaction of the polymer-modified liposomes with cells can be controlled by the ambient temperature, these liposomes may have potential usefulness as efficient site-specific drug delivery systems.  相似文献   

18.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

19.
Kim S  Healy KE 《Biomacromolecules》2003,4(5):1214-1223
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with peptide cross-linkers to create an artificial extracellular matrix (ECM) amenable for testing hypotheses regarding cell proliferation and migration in three dimensions. Peptide degradable cross-linkers were synthesized by the acrylation of the amine groups of glutamine and lysine residues within peptide sequences potentially cleavable by matrix metalloproteinases synthesized by mammalian cells (e.g., osteoblasts). With the peptide cross-linker, loosely cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, and enzymatic degradation properties were investigated. The peptide-cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and fluidlike at room temperature and could be injected through a small-diameter aperture. The LCST of peptide-cross-linked hydrogel was influenced by the monomer ratio of NIPAAm/AAc but not by cross-linking density within the polymer network. A peptide-cross-linked hydrogel with a 97/3 molar ratio of NIPAAm/AAc exhibited a LCST of approximately 34.5 degrees C. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, and swelling media; however, all hydrogels maintained more than 90% water even at 37 degrees C. In enzymatic degradation studies, breakdown of the peptide-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on both the concentration of collagenase and the cross-linking density. These results suggest that peptide-cross-linked P(NIPAAm-co-AAc) hydrogels can be tailored to create environmentally-responsive artificial extracellular matrixes that are degraded by proteases.  相似文献   

20.
End-functionalized poly(N-isopropylacrylamide) (PNIPA) was synthesized by living free radical polymerization and conventional free radical polymerization and was used to prepare graft copolymers with poly(ethylenimine) (PEI). The copolymers exhibited lower critical solution temperature (LCST) behavior between 30 and 32 degrees C and formed complexes with plasmid DNA. The LCST of the copolymers in the DNA complexes increased slightly to approximately 34-35 degrees C. Cytotoxicity of the copolymers was evaluated by measuring lactate dehydrogenase (LDH) release from cells. The copolymers exhibited temperature-dependent toxicity, with higher levels of LDH release observed at temperatures above the LCST. Cellular uptake and transfection activity of the DNA complexes with the PEI-g-PNIPA copolymers were lower than those of the control PEI/DNA complexes at temperature below the LCST but increased to the PEI/DNA levels at temperatures above the LCST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号