首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4-0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

2.
The effect of the histidine-modifier ethoxyformic anhydride (EFA) on the enzymatic properties of the mitochondrial b-c1 complex (ubiquinol-cytochrome c reductase) has been investigated. Chemical modification by EFA inhibited to the same extent the reductase and the proton translocating activity of the complex. In particular EFA modification of the complex resulted in: strong inhibition of the antimycin-insensitive reduction of b cytochromes; inhibition of the antimycin-promoted oxidant-induced reduction of b cytochromes and inhibition of oxidation of pre-reduced b cytochromes. Analysis of the absorbance at 238 nm, indicative of N-(ethoxyformyl)histidine derivative, of the various polypeptide subunits separated by high-pressure liquid chromatography procedure, showed that EFA modified residues in core proteins and in the low-molecular-mass proteins. Both the inhibition of the redox and the protonmotive activity of the complex and the absorbance increase at 238 nm of the core protein fraction were readily reversed by hydroxylamine, indicating that modification of histidine residue(s) in core protein(s) is critical for the activity of the complex. This was supported by the finding that modification of the reductase with EFA prevented binding of fluorescein isothiocyanate to histidine residue(s) in core protein II. EFA modification of the reductase was without effect on the binding of N-(7-dimethylamino-4-methylcoumarinyl)maleimide to the various polypeptides of the complex except for the binding to the Fe-S protein which was greatly potentiated. Thus primary chemical modification of histidine residue(s) in core protein (II) appears to cause, in turn, a conformational change in the Rieske Fe-S protein.  相似文献   

3.
Antimycin, a specific and highly potent inhibitor of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain, does not inhibit reduction of cytochrome c1 by succinate in isolated succinate-cytochrome c reductase complex under conditions where the respiratory chain complex undergoes one oxidation-reduction turnover. If a slight molar excess of cytochrome c is added to the isolated reductase complex in the presence of antimycin, there is rapid reduction of one equivalent of c type cytochrome by succinate, after which reduction of the remaining c type cytochrome is inhibited. Antimycin fully inhibits succinate-cytochrome c reductase activity of isolated succinate-cytochrome c reductase complex in which the b-c1 complex undergoes multiple turnovers in a catalytic fashion. In addition, when antimycin is added to isolated reductase complex in the presence of cytochrome c plus cytochrome c oxidase, the inhibitor causes a "crossover" in the steady state level of reduction of the cytochromes b and c1 comparable to this classical effect in mitochondria. On the basis of these results, it is suggested that linear schemes of electron transfer are not adequate to account for the site of antimycin inhibition and the mechanism of electron transfer in the cytochrome b-c1 segment of the respiratory chain. The effects of antimycin are consistent with cyclic electron transfer mechanisms such as the protonmotive Q cycle.  相似文献   

4.
Mucidin and strobilurin A, antifungal antibiotics isolated from the basidiomycetes Oudemansiella mucida and Strobiluris tenacellus, respectively, inhibit electron-transfer reactions in the cytochrome bc1 complex of the mitochondrial respiratory chain. The two compounds have identical effects on oxidation-reduction reactions of the cytochromes b and c1 in isolated succinate-cytochrome c reductase. They inhibit reduction of cytochrome c1 by succinate but do not inhibit reduction of cytochrome b. When added in combination with antimycin, either inhibitor blocks reduction of both cytochromes b and c1. Mucidin and strobilurin A differ from antimycin in that they inhibit, rather than promote, oxidant-induced reduction of cytochrome b. They also differ from antimycin in that they do not block reduction of cytochrome b by succinate when cytochrome c1 is previously reduced by ascorbate and they do not inhibit oxidation of cytochrome b by fumarate. These effects of mucidin and strobilurin A are, however, qualitatively identical with those of myxothiazol, an antibiotic that inhibits respiration by binding to cytochrome b [Von Jagow, G., Ljungdahl, P. O., Graf, P., Ohnishi, T., & Trumpower, B. L. (1984) J. Biol. Chem. 259, 6319-6326]. Mucidin and strobilurin A have identical UV and mass spectra, and they elute together on high-pressure liquid chromatography. We thus conclude that these antibiotics, although isolated from different bacteria, are structurally identical. Our results indicate that strobilurin A and mucidin inhibit electron transport at the same site as myxothiazol and not at the antimycin site, as previously reported [Subik, J., Behren, M., & Musilek, V. (1974) Biochem. Biophys. Res. Commun. 57, 17-22].  相似文献   

5.
B.Dean Nelson  P. Walter  L. Ernster 《BBA》1977,460(1):157-162
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4–0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

6.
We have investigated in detail the effects of dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, DBMIB) on the ubiquinol-cytochrome c reductase (cytochrome bc1 complex) from bovine heart mitochondria. The inhibitory action of DBMIB on the steady-state activity of the bc1 complex is related to the specific binding of the quinone to the purified enzymatic complex. At concentrations higher than 10 mol per mol of the enzyme, DBMIB is able to stimulate an antimycin-insensitive reduction of cytochrome c catalyzed by the bc1 complex. In accordance with kinetic data showing a competition by endogenous ubiquinone in the inhibitory action, DBMIB can be considered as a product-like inhibitor of the ubiquinol-cytochrome c reductase activity. The site of specific binding of dibromothymoquinone in the bc1 complex enables it to interact with the iron-sulphur center of the enzyme, as indicated by changes induced in the EPR spectrum of the center. However, the inhibitor also directly interacts with cytochrome b, promoting a fast chemical oxidation of the reduced heme center. In spite of these effects, DBMIB has been found not to exert significant effects on the first turnover of the fully oxidized bc1 complex, as monitored by the rapid reduction of both cytochromes b and c1 by ubiquinol-1. In the presence of antimycin, only a stimulation of cytochrome c1 reduction, in parallel to an enhanced cytochrome b reoxidation, is observed. Moreover, DBMIB does not affect the oxidant-induced extra cytochrome b reduction in the presence of antimycin. On the basis of the evidences suggesting a competition with the endogenous ubiquinone in the redox cycle of the bc1 complex, a model is proposed for the mechanism of DBMIB inhibition. Such model can also explain at the molecular level the redox bypass induced by dibromothymoquinone in the whole respiratory chain (Degli Esposti, M., Rugolo, M. and Lenaz, G. (1983) FEBS Lett. 156, 15-19).  相似文献   

7.
Reduction of cytochrome b in isolated succinate-cytochrome c reductase is a triphasic reaction. Initially, there is a relatively rapid, partial reduction of the cytochrome b, the rate of which matches the rate of reduction of cytochrome c1. This is followed by partial or complete reoxidation of the b, which is then followed by slow rereduction. At very low concentrations of succinate, the initial partial reduction of b is followed by reoxidation, but the third (rereduction) phase is absent, owing to insufficient substrate to rereduce the cytochromes. If antimycin is added at various times during the triphasic reaction, it inhibits the reoxidation and also inhibits the rereduction phase. Antimycin does not inhibit the initial phase of b reduction and, if added before or during this phase, it causes reduction of b to proceed to completion as a monophasic reaction. Myxothiazol inhibits the first phase of b reduction and the subsequent reoxidation, but does not inhibit the third, slow phase of b reduction. The resulting monophasic reduction of b which is observed in the presence of myxothiazol is slower than that in the presence of antimycin. The combination of both inhibitors, whether added together or successively during the triphasic reaction, completely inhibits b reduction. The triphasic reduction of cytochrome b is consistent with electron transfer by a protonmotive Q cycle in which there are two pathways for cytochrome b reduction. One pathway allows the initial phase of cytochrome b reduction by a myxothiazol-sensitive reaction in which reduction of b by ubisemiquinone is linked to reduction of iron-sulfur protein and cytochrome c1 by ubiquinol. In the second phase of the triphasic reaction, the b cytochromes are reoxidized by ubiquinone or ubisemiquinone through an antimycin-sensitive reaction. If oxidation of ubiquinol by iron-sulfur protein is blocked, either by myxothiazol or by reduction of iron-sulfur protein and cytochrome c1, the b cytochromes can be reduced by reversal of the antimycin-sensitive pathway, thus accounting for the third phase of b reduction.  相似文献   

8.
Resolution and reconstitution has been used to examine the involvement of the iron-sulfur protein of the cytochrome b-c1 segment in electron transfer reactions in this region of the mitochondrial respiratory chain. The iron-sulfur protein is required for electron transfer from succinate and from ubiquinol to cytochrome c1. It is not required for reduction of cytochrome b under these conditions, but it is required for oxidation of cytochrome b by cytochrome c plus cytochrome c oxidase. Removal of the iron-sulfur protein from the b-c1 complex prevents reduction of both cytochromes b and c1 by succinate or ubiquinol if antimycin is added to the depleted complex. As increasing amounts of iron-sulfur protein are reconstituted to the depleted complex, the amounts of cytochromes b and c1 reduced by succinate in the presence of antimycin increase and closely parallel the amounts of ubiquinol-cytochrome c reductase activity restored to the reconstituted complex, measured before addition of antimycin. The function of the iron-sulfur protein in these oxidation-reduction reactions is consistent with a cyclic pathway of electron transfer through the cytochrome b-c1 complex, in which the iron-sulfur protein functions as a ubiquinol-cytochrome c1/ubisemiquinone-cytochrome b oxidoreductase.  相似文献   

9.
L Clejan  D S Beattie 《Biochemistry》1986,25(24):7984-7991
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase but had comparable amounts of cytochromes b and c1 as wild-type mitochondria. Addition of succinate to the mutant mitochondria resulted in a slight reduction of cytochrome b; however, the subsequent addition of antimycin resulted in a biphasic reduction of cytochrome b, leading to reduction of 68% of the total dithionite-reducible cytochrome b. No "red" shift in the absorption maximum was observed, and no cytochrome c1 was reduced. The addition of either myxothiazol or alkylhydroxynaphthoquinone blocked the reduction of cytochrome b observed with succinate and antimycin, suggesting that the reduction of cytochrome b-562 in the mitochondria lacking coenzyme Q may proceed by a pathway involving cytochrome b at center o where these inhibitors block. Cyanide did not prevent the reduction of cytochrome b by succinate and antimycin the the mutant mitochondria. These results suggest that the succinate dehydrogenase complex can transfer electrons directly to cytochrome b in the absence of coenzyme Q in a reaction that is enhanced by antimycin. Reduced dichlorophenolindophenol (DCIP) acted as an effective bypass of the antimycin block in complex III, resulting in oxygen uptake with succinate in antimycin-treated mitochondria. By contrast, reduced DCIP did not restore oxygen uptake in the mutant mitochondria, suggesting that coenzyme Q is necessary for the bypass. The addition of low concentrations of DCIP to both wild-type and mutant mitochondria reduced with succinate in the presence of antimycin resulted in a rapid oxidation of cytochrome b perhaps by the pathway involving center o, which does not require coenzyme Q.  相似文献   

10.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reoxidation is observed in the wild type in the present of low concentrations of antimycin. 2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steady-state reduction; reduction in the presence of substrate, cyanide and oxygen; the 'red shift' and lowering of E'-o of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable. 3. The red shift in the mutant is more extensive than in the wild type. 4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes. 5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant. 6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH-2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycin-binding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   

11.
Electron transport pathways to nitrous oxide in Rhodobacter species   总被引:3,自引:0,他引:3  
1. Electron transport components involved in nitrous oxide reduction in several strains of Rhodobacter capsulatus and in the denitrifying strain of Rhodobacter sphaeroides (f. sp. denitrificans) have been investigated. Detailed titrations with antimycin A and myxothiazol, inhibitors of the cytochrome bc1 complex, show that part of the electron flow to nitrous oxide passes through this complex. The sensitivity to myxothiazol varies between strains and growth conditions of R. capsulatus; the higher rates of nitrous oxide reduction correlate with the higher sensitivities. Partial inhibition of the nitrous oxide reductase enzyme with azide decreased the sensitivity to myxothiazol of the strains that had the highest nitrous oxide reductase activity. 2. Inhibition of nitrous oxide reduction in cells of R. capsulatus by myxothiazol could be restored under dark conditions by addition of N,N,N',N'-tetramethyl-p-phenylene diamine. The highest activities observed after addition of this electron carrier were found in the strains that had the highest sensitivity to myxothiazol, consistent with the premise that this inhibitor is more effective at the higher flux rates to nitrous oxide. 3. Addition of nitrous oxide to cells of R. capsulatus strain N22DNAR+ under darkness caused oxidation of both b- and c-type cytochromes. The oxidation of b cytochromes was less pronounced in the presence of myxothiazol, consistent with a role for the cytochrome bc1 complex in the electron pathway to nitrous oxide. Ferricyanide, in the absence of myxothiazol, caused a similar extent of oxidation of b cytochromes, but a greater oxidation of c-type, suggesting that there was a pool of c-type cytochrome that was not oxidisable by nitrous oxide. The time course showed that both the b- and c-type cytochromes were oxidised within a few seconds of the addition of nitrous oxide. During the following seconds there was a partial re-reduction of the cytochromes such that after approximately 1 min a lower steady-state of oxidation was attained and this persisted until the nitrous oxide was exhausted. 4. A mutant, MTCBC1, of R. capsulatus that specifically lacked a functional cytochrome bc1 complex reduced nitrous oxide, albeit at 30% of the rate shown by the parent strain MT1131. A reduced minus nitrous-oxide-oxidised difference spectrum for MTCBC1 in the absence of myxothiazol was similar to the corresponding difference spectrum observed for strain N22DNAR+ in the presence of myxothiazol. It is suggested that these difference spectra identify the cytochrome components, including a b-type, involved in a pathway that is alternative to, and independent of, the cytochrome bc1 complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Cytochrome c reductase purified from the trypanosomatid Crithidia fasciculata retained antimycin A sensitivity and catalyzed the reduction of horse heart ferricytochrome c in the presence of reduced coenzyme Q10. The complex contained heme b and heme c1 in a ratio of 2:1. Nine major protein bands ranging in size from 55.3 to approximately 12.8 kDa were resolved by SDS-polyacrylamide gel electrophoresis. A 31.6-kDa protein was identified as cytochrome c1 by the presence of a covalently attached heme. A red shift in the alpha-absorbance band of the cytochrome c1 absolute absorbance spectrum, difference absorbance spectrum, and pyridine ferrohemochrome absorbance spectrum suggested that the heme prosthetic group of C. fasciculata cytochrome c1 is bound to the apoprotein through only one thioether bond. A fragment of the cytochrome c1 gene was amplified from C. fasciculata, Trypanosoma brucei, Leishmania tarentolae, and Bodo caudatus. The deduced heme binding site sequence of each of these kinetoplastid species, Phe-Ala-Pro-Cys-His, contains a phenylalanine rather that a cysteine at the first position so that only one thioether bond can be formed between heme and apoprotein. This phenylalanine substitution and the presence of a conserved proline in the sequence may represent compensatory changes that are necessary for optimal interaction of the cytochromes c1 with the atypical cytochromes c of these species.  相似文献   

13.
A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the leads to H+/e- ratio, computed on the basis of total electron flow from respiratory carriers to oxygen, varies with pH, remaining always lower than 1, and is unaffected by N-ethylmaleimide. 2-Heptyl-4-hydroxyquinoline N-oxide and 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, at concentrations which inhibit in the presence of antimycin the oxygen-induced reduction of b cytochromes, cause also a marked depression of the H+ release associated with aerobic oxidation of terminal respiratory carriers. Aerobic oxidation of the cytochrome system in mitochondria and of isolated b-c1 complex and cytochrome c oxidase results in scalar proton release from ionizable groups (redox Bohr effects). In mitochondria and submitochondrial particles, about 70% of the oxidoreductions of the components of the cytochrome system are linked to scalar proton transfer by ionizable groups. In isolated b-c1 complex scalar proton transfer, resulting from redox Bohr effect, amounts to 0.9H+ per Fe-S protein (190 muT). In isolated cytochrome c oxidase, Bohr protons amount to 0.8 per haem a + a3. The results presented indicate that the H+ release from mitochondria during oxidation of terminal respiratory carriers derives from residual antimycin-insensitive electron flow in the quinone-cytochrome c span and from redox Bohr effects in the b-c1 complex and cytochrome c oxidase. There is no sign of proton pumping by cytochrome oxidase during its transition from the reduced to the active 'pulsed' state and the first one or two turnovers.  相似文献   

14.
The pK and mid-point redox potential of the Q-analogue 7-(n-heptadecyl)mercapto-6-hydroxy-5,8-quinolinequinone (HMHQQ) in aqueous medium are so low that under the experimental conditions used for studying the inhibition of electron transfer in submitochondrial particles only the oxidized, anionic form is present. The KD of the analogue, determined by comparing its inhibitory effect with that of n-heptyl-4-hydroxyquinoline N-oxide, is (0.003 + 0.24 x mg protein/ml) microM. The inhibition of succinate oxidation is pH dependent, due to a pH-dependent change in the overcapacity of the QH2-oxidizing system above the Q-reducing system. If the terminal part of the respiratory chain is reduced with ascorbate, the analogue inhibits the reduction of cytochrome b by substrate in the presence of antimycin with a similar KD value. In the absence of ascorbate the KD value is 100-times higher. The reduction of cytochrome b by substrate in particles treated with 2,3-dimercaptopropanol (BAL) + O2 is also sensitive to HMHQQ, with a KD value in between the two values given above. It is concluded that the QH2 oxidase system contains two different sites for interaction with ubiquinone. The site responsible for the inhibition of steady-state electron transfer is near the Fe-S cluster, as is shown by the sensitivity to the redox state of this cluster and by the effect of HMHQQ on the EPR signal of the reduced cluster. The second site, which is similar to the antimycin-binding site, is occupied only at higher concentrations of inhibitor. The affinity of HMHQQ for this site is not affected by the redox state of the Fe-S cluster.  相似文献   

15.
D S Beattie  L Clejan 《Biochemistry》1986,25(6):1395-1402
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase activity but contained normal amounts of cytochromes b and c1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives including Q2, Q6, and the decyl analogue (DB) restored the rate of antimycin- and myxothiazole-sensitive cytochrome c reductase with both substrates to that observed with reduced DBH2. Similarly, addition of these coenzyme Q analogues increased 2-3-fold the rate of cytochrome c reduction in mitochondria from wild-type cells, suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain. Preincubation of mitochondria from the Q-deficient yeast cells with DBH2 at 25 degrees C restored electrogenic proton ejection, resulting in a H+/2e- ratio of 3.35 as compared to a ratio of 3.22 observed in mitochondria from the wild-type cell. Addition of succinate and either coenzyme Q6 or DB to mitochondria from the Q-deficient yeast cells resulted in the initial reduction of cytochrome b followed by a slow reduction of cytochrome c1 with a reoxidation of cytochrome b. The subsequent addition of antimycin resulted in the oxidant-induced extrareduction of cytochrome b and concomitant oxidation of cytochrome c1 without the "red" shift observed in the wild-type mitochondria. Similarly, addition of antimycin to dithionite-reduced mitochondria from the mutant cells did not result in a red shift in the absorption maximum of cytochrome b as was observed in the wild-type mitochondria in the presence or absence of exogenous coenzyme Q analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A cytochrome b/c1 complex which catalyses the reduction of cytochrome c by ubiquinol has been isolated from Rhodopseudomonas sphaeroides GA. It contains two hemes b and substoichiometric amounts of ubiquinone-10 and of the Rieske Fe-S center per cytochrome c1, and is essentially free of reaction center and bacteriochlorophyll. The complex consists of three major polypeptides with apparent molecular masses of 40, 34 and 25 kDa. The 34-kDa polypeptide carries heme. Cytochrome c1 has a midpoint potential of 285 mV. For cytochrome b two midpoint potentials, at 50 and -60 mV, at pH 7.4, can be derived if one assumes two components of equal amount. Ubiquinol--cytochrome c oxidoreductase activity is specific for ubiquinol and bacterial cytochromes c, and is inhibited by antimycin A and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole. The complex shows oxidant-induced reduction of cytochrome b.  相似文献   

17.
A procedure is described for isolation of active ubiquinol-cytochrome c oxidoreductase (bc1 complex) from potato tuber mitochondria using dodecyl maltoside extraction and ion exchange chromatography. The same procedure works well with mitochondria from red beet and sweet potato. The potato complex has at least 10 subunits resolvable by gel electrophoresis in the presence of dodecyl sulfate. The fifth subunit carries covalently bound heme. The two largest ("core") subunits either show heterogeneity or include a third subunit. The purified complex contains about 4 mumol of cytochrome c1, 8 mumol of cytochrome b, and 20 mumol of iron/g of protein. The complex is highly delipidated, with 1-6 mol of phospholipid and about 0.2 mol of ubiquinone/mol of cytochrome c1. Nonetheless it catalyzes electron transfer from a short chain ubiquinol analog to equine cytochrome c with a turnover number of 50-170 mol of cytochrome c reduced per mol of cytochrome c1 per s, as compared with approximately 220 in whole mitochondria. The enzymatic activity is stable for weeks at 4 degrees C in phosphate buffer and for months at -20 degrees C in 50% glycerol. The activity is inhibited by antimycin, myxothiazol, and funiculosin. The complex is more resistant to funiculosin and diuron than the beef heart enzyme. The optical difference spectra of the cytochromes were resolved by analysis of full-spectrum redox titrations. The alpha-band absorption maxima are 552 nm (cytochrome c1), 560 nm (cytochrome b-560), and 557.5 + 565.5 nm (cytochrome b-566, which has a split alpha-band). Extinction coefficients appropriate for the potato cytochromes are estimated. Despite the low lipid and ubiquinone content of the purified complex, the midpoint potentials of the cytochromes (257, 51, and -77 mV for cytochromes c1, b-560, and b-566, respectively) are not very different from values reported for whole mitochondria. EPR spectroscopy shows the presence of a Rieske-type iron sulfur center, and the absence of centers associated with succinate and NADH dehydrogenases. The complex shows characteristics associated with a Q-cycle mechanism of redox-driven proton translocation, including two pathways for reduction of b cytochromes by quinols and oxidant-induced reduction of b cytochromes in the presence of antimycin.  相似文献   

18.
The present study examines the effect of the acetylenic thioester dec-2-ynoyl-CoA (delta 2 10 identical to 1-CoA) on the microsomal fatty acid chain elongation pathway in rat liver. When the individual reactions of the elongation system were measured in the presence of delta 2 10 identical to 1-CoA, the trans-2-enoyl-CoA reductase activity was markedly inhibited (Ki = 2.5 microM), whereas the activities of the condensing enzyme, the beta-ketoacyl-CoA reductase, and the beta-hydroxyacyl-CoA dehydrase were not affected. The absence of inhibition of total microsomal fatty acid elongation was attributed to the significant accumulation of the intermediates, beta-hydroxyacyl-CoA and trans-2-enoyl-CoA, without formation of the saturated elongated product, indicating that the trans-2-enoyl-CoA reductase-catalyzed reaction was the only site affected by the inhibitor. The nature of the inhibition was noncompetitive. In contrast to the delta 2 10 identical to 1-CoA, delta 3 10 identical to 1-CoA did not inhibit trans-2-enoyl-CoA reductase activity, suggesting that the mode of inhibition was not via formation of the 2,3-allene derivative. Based on the observation (a) that p-chloromercuribenzoate markedly inhibits reductase activity, (b) that dithiothreitol protects the enzyme against inactivation by delta 2 10 identical to 1-CoA, (c) of the spectral manifestation of the interaction between thiol reagents and delta 2 10 identical to 1-CoA depicting an absorbance peak similar to that of the beta-ketoacyl thioester-Mg2+ enolate complex, (d) of a similar absorbance spectrum formed by the interaction between delta 2 10 identical to 1-CoA and liver microsomes, and (e) of the absence of formation of a similar spectrum by delta 3 10 identical to 1-CoA, trans-2-10:1-CoA, or delta 2 10 identical to 1 free acid with liver microsomes, we propose that delta 2 10 identical to 1-CoA inactivates trans-2-enoyl-CoA reductase by covalently binding to a critical sulfhydryl group at or in close proximity to the active site of the enzyme.  相似文献   

19.
The kinetic behaviour of the prosthetic groups and the semiquinones in in QH2:cytochrome c oxidoreductase has been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) In the absence of antimycin, cytochrome b-562 is reduced in two phases separated by a lag time. The initial very rapid reduction phase, that coincides with the formation of the antimycin-sensitive Qin, is ascribed to high-potential cytochrome b-562 and the slow phase to low-potential cytochrome b-562. the two cytochromes are present in a 1:1 molar ratio. The lag time between the two reduction phases decreases with increasing pH. Both the [2 Fe-2S] clusters and cytochrome c1 are reduced monophasically under these conditions, but at a rate lower than that of the initial rapid reduction of cytochrome b-562. (3) In the presence of antimycin and absence of oxidant, cytochrome b-562 is still reduced biphasically, but there is no lag between the two phases. No Qin is formed and both the Fe-S clusters and cytochrome c1 are reduced biphasically, one-half being reduced at the same rate as in the absence of antimycin and the other half 10-times slower. (4) In the presence of antimycin and oxidant, the recently described antimycin-insensitive species of semiquinone anion, Qout (De Vries, S., Albracht, S.P.J., Berden, J.A. and Slater, E.C. (1982) J. Biol. Chem. 256, 11996-11998) is formed at the same rate as that of the reduction of all species of cytochrome b. In this case cytochrome b is reduced in a single phase. (5) The reversible change of the line shape of the EPR spectrum of the [2Fe-2S] cluster 1 is caused by ubiquinone bound in the vicinity of this cluster. (6) The experimental results are consistent with the basic principles of the Q cycle. Because of the multiplicity, stoicheiometry and heterogeneous kinetics of the prosthetic groups, a Q cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase is proposed.  相似文献   

20.
1. In the presence of antimycin and KCN the reduction of cytochrome b in phosphorylating submitochondrial particles followed a biphasic first-order kinetics. The transition from the first, rapid phase to the second, slow phase occurred while the reduction of chtochromes c + c1 and a through or around the antimycin block was still linear with time. Thus, the phase transition was due to a fall-off in the rate of cytochrome b reduction. 2. The biphasic reduction of cytochrome b was observed over a wide temperature range (0--30 degrees C), with succinate of NADH as electron donors and with phosphorylating particles or coupled rat-heart mitochondria. With rat-heart mitochondria the same biphasic reduction was observed in the presence of either carbonyl cyanide p-trifluoromethoxyphenylhydrazone or oligomycin. 3. In both the rapid and the slow phases, the rate of reduction of cytochrome b-561 was equal to that of b-565. Thus both cytochromes b-561 and b-565 were affected by the mechanism which determined the reduction-rate. Furthermore, each of these cytochromes could be reduced individually with rate constants typical of the slow phase. 4. The proportion of rapidly reduced to slowly reduced cytochrome b was independent of the degree of its reducibility and could be controlled by teh experimental conditions. When antimycin was used as the only inhibitor, 96% of the b-type cytochromes were reduced in the rapid phase. If the c and a-type cytochromes were first reduced by ascorbate and tetramethyl-p-phenylenediamine in the presence of KCN and antimycin, all the b-type cytochromes were fully reduced at the slow-rate. 5. With succinate, the rate of the rapid phase depended on the activation level of the succinic-dehydrogenase. The rate constant of the second phase was unaffected by the succinic dehydrogenase activity, if the preparation was more than 20% active. Furthermore, the rate constant of the slow reduction was the same with succinate, NADH, or even with durohydroquinone (which reacted directly with cytochromes b). 6. It is suggested that cytochrome b can exist in two forms: kinetically active or sluggish. The active form is rapidly reduced by the endogenous quinone (QH2) or durohydroquinone. The rate of the reduction of the active form by succinate or NADH is probably determined by the rate of the reduction of Q by the dehydrogenases. The second form of cytochrome b is characterized by its sluggish reduction by QH2 or durohydroquinone. 7. It is proposed that the transformation from the active to the sluggish form is induced by the reduction of a controlling group, named Y, located on the oxygen side of the antimycin inhibition site. When Y is oxidized, cytochrome b is in its active form, and when Y is reduced, cytochrome b is in its sluggish form. The nature of this kinetic control and a comparison with the mechanism controlling the reducibility of cytochrome b are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号