首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Constitutive heterochromatin is essential for chromosome maintenance in all eukaryotes. However, the repetitive nature of the underlying DNA, the presence of very stable protein-DNA complexes and the highly compacted nature of this type of chromatin represent a challenge for the DNA replication machinery. Data collected from different model organisms suggest that at least some of the components of the DNA replication checkpoint could be essential for ensuring the completion of DNA replication in the context of heterochromatin. I review and discuss the literature that directly or indirectly contributes to the formulation of this hypothesis. In particular, I focus my attention on Rif1, a newly discovered member of the DNA replication checkpoint. Recent data generated in mammalian cells highlight the spatial and temporal relation between Rif1, pericentromeric heterochromatin and S-phase. I review these recent and the previous data coming from studies performed in yeast in order to highlight the possible evolutionary conserved links and propose a molecular model for Rif1 role in heterochromatin replication.  相似文献   

2.
3.
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vITSs) are also localized at the centromeric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere sequences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluorescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved telomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.  相似文献   

4.
A cold-induced undercontraction of certain chromosome segments is found in Scilla sibirica after treatment at −12 °C. The regions showing heterochromatic properties in the classical sense are late-replicating and identical with the segments that are undercontracted after cold treatment.  相似文献   

5.
The Chinese hamster genome contains a total of 18 cytologically detectable arrays of interstitial telometic sequences. A combination of G-banding and twocolour fluorescence in situ hybridization revealed that 25 out of 27 (93%) breakpoints of spontaneously occurring terminal deletions in four immortalized Chinese hamster cell lines were located in chromosomal regions containing interstitial telomeric sequences. Each of the four immortalized Chinese hamster cell lines expressed telomerase. Radiation experiments revealed the sensitivity of interstitial telomeric sequences to radiation-induced chromosomal breakage in all telomerase-positive cell lines. However, radiation-induced chromosomal breakage at interstitial telomeric sites in non-transformed, primary Chinese hamster cells was almost non-existent. Telomerase activity in primary Chinese hamster cells was not detected. These results indirectly suggest that interstitial telomeric sites represent a favourable substrate for chromosomal healing.  相似文献   

6.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

7.
The length variability of four human interstitial telomeric sequences (ITs) is described. Three of the ITs contain short telomeric stretches ranging between 53 and 84 bp and are localized in 21q22, 2q31, and 7q36; the fourth IT derives from the subtelomeric domain of chromosome 6p and contains a tract of a few hundred basepairs of exact and degenerate repeats. Using primers flanking the repeats, we amplified the genomic DNA from unrelated individuals and from family members, and we found that all the loci are polymorphic. At the 21q22 IT locus, two equally frequent alleles were found, while the number of alleles at the 2q31, 7q36, and 6pter IT loci was 8, 6, and 4, respectively. Sequence analysis revealed that in the three loci containing short ITs the alleles differ from one another for multiples of the hexanucleotide; it is likely that the mechanism leading to the polymorphism is DNA polymerase slippage. These loci were also unstable in gastric tumor cells characterized by microsatellite instability. At the 6pter IT locus, the four alleles range in length from about 500 to about 700 bp; this variability is probably due to unequal exchange or gene conversion. Our data indicate that stretches of exact internal telomeric repeats can be highly unstable, like microsatellites with shorter units, and that they can be useful polymorphic markers for linkage analysis, for forensic applications, and for the detection of genetic instability in tumors.  相似文献   

8.
The structure of telomeric DNA   总被引:9,自引:0,他引:9  
The telomere is a nucleoprotein complex located at the ends of eukaryotic chromosomes. It is essential for maintaining the integrity of the genome. It is not a linear structure and, for much of the cell cycle, telomeric DNA is maintained in a loop structure, which serves to protect the vulnerable ends of chromosomes. Many of the key proteins in the telomere have been identified, although their interplay is still imperfectly understood and structural data are only available on a few. Telomeric DNA itself comprises simple guanine-rich repeats for most of its length, culminating in a short overhang of single-stranded sequence at the extreme 3' ends. This can, at least in vitro, fold into a wide variety of four-stranded quadruplex structures, many of whose arrangements are being revealed by crystallographic and NMR studies.  相似文献   

9.
Interstitial Telomeric Repeat Sequence (ITRS) blocks are recognized as hot spots for spontaneous and ionizing radiation-induced chromosome breakage and recombination. Background and ionizing radiation-induced DNA breaks in large blocks of ITRS from Chinese hamster cell lines were analyzed using the DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH) procedure. Our results indicate an extremely alkali-sensitivity of ITRS. Furthermore, it appears that ITRS blocks exhibit a particular chromatin structure, being enriched in short unpaired DNA segments. These segments could be liable to severe topological stress in highly compacted areas of the genome resulting in their spontaneous fragility and thus explaining their alkali-sensitivity. The induction and repair kinetics of DNA single-strand breaks (ssb) and DNA double-strand breaks (dsb) induced by ionizing radiation were assessed by DBD-FISH on neutral comets using Chinese hamster cells deficient in either DNA-PKcs or Rad51C. Our results indicate that the initial rejoining rate of dsb within ITRS is slower than that in the whole genome, in wild-type cells, demonstrating an intragenomic heterogeneity in dsb repair. Interestingly, in the absence of DNA-PKcs activity, the rejoining rate of dsb within ITRS is not modified, unlike in the whole genome. This was also found in the case of Rad51C mutant cells. Our results suggest the possibility that different DNA sequences or chromatin organizations may be targeted by specific dsb repair pathways. Furthermore, it appears that additional unknown dsb repair pathways may be operational in mammalian cells.  相似文献   

10.
Summary We reviewed the concept of homology, which can broadly be defined as a correspondence between characteristics that is caused by continuity of information (Van Valen 1982). The concept applies widely in molecular biology when correspondence is taken to mean a genetic relationship resulting from a unique heritable modification of a feature at some previous point in time. Such correspodence can be established for features within a single organism as well as between organisms, making paralogy a valid form of molecular homology under this definition. Molecular homology can be recognized at a variety of organizational levels, which are intedependent. For example, the recognition of homology at the site level involves a statement of homology at the sequence level, and vice versa. This hierarchy, the potential for nonhomologous identity at the site level, and such processes as sequence transposition combine to yield a molecular equivalent to complex structural homology at the anatomical level. As a result, statements of homology between heritable units can involve a valid sense of percent homology.We analyzed DNA hybridization with respect to the problems of recognizing homology and using it in phylogenetic inference. Under a model requiring continuous divergence among compared sequences, DNA hybridization distances embed evolutionary hierarchy, and groups inferred using pairwise methods of tree reconstruction are based on underlying patterns of apomorphic homology. Thus, symplesiomorphic homology will not confound DNA hybridization phylogenies. However, nonhomologous identities that act like apomorphic homologies can lead to inaccurate reconstructions. The main difference between methods of phylogenetic analysis of DNA sequences is that parsimony methods permit hypotheses of nonhomology, whereas distance methods do not.This article was presented at the C.S.E.O.L. Conference on DNA-DNA Hybridization and Evolution, Lake Arrowhead, California, May 11–14, 1989  相似文献   

11.
12.
13.
Majerová et al. (Plant Mol Biol, 2011) have recently reported that a considerable fraction of cytosines at tobacco telomeres is methylated. Although the data presented in this report indicate that tobacco telomeric sequences undergo certain levels of DNA methylation, it is not clear whether the methylated sequences are at telomeres, at internal chromosomal loci or at both.  相似文献   

14.
Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.  相似文献   

15.
We studied the organization of telomeric, major and minor satellite DNA sequences located in the pericentromeric regions of mouse telocentric and Robertsonian metacentric chromosomes by high-resolution fluorescence in situ hybridization. Molecular data have already proved that in telocentrics, from the physical chromosome end, telomeric sequences are followed by minor and then by major satellite DNA. We showed that the three families of repetitive DNA are organized as uninterrupted long-range cluster repeats and that there is no intermingling between telomeric and minor satellite DNA or between the major and the minor tandem repeats or with non-satellite DNA. The pericentromeric region of metacentric chromosomes consists of a small block of minor satellite DNA sandwiched between two blocks of major satellite DNA.  相似文献   

16.
Heterochromatin Formation: Role of Short RNAs and DNA Methylation   总被引:2,自引:0,他引:2  
  相似文献   

17.
Ten per cent of mouse DNA occurs as a satellite band with a buoyant density lighter than that of the main band1. This satellite contains highly repetitious DNA2,3. It has been shown that the amount of satellite is markedly increased in DNA isolated from the heterochromatin fraction of mouse nuclei4. Furthermore, in situ hybridization studies have shown that satellite DNA is localized to the pericentromeric heterochromatin of all the mouse chromosomes except the Y5,6. These observations demonstrate an intimate association between mouse satellite DNA and heterochromatin and they raise the question: is all the DNA from mouse heterochromatin composed of satellite DNA or is a significant portion composed of non-satellite DNA?  相似文献   

18.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein primarily associated with the pericentric heterochromatin and telomeres in Drosophila. The molecular mechanism by which HP1 specifically recognizes and binds to chromatin is unknown. The purpose of this study was to test whether HP1 can bind directly to nucleosomes. HP1 binds nucleosome core particles and naked DNA. HP1-DNA complex formation is length-dependent and cooperative but relatively sequence-independent. We show that histone H4 amino-terminal peptides bind to monomeric and dimeric HP1 in vitro. Acetylation of lysine residues had no significant effect on in vitro binding. The C-terminal chromo shadow domain of HP1 specifically binds H4 N-terminal peptide. Neither the chromo domain nor chromo shadow domain alone binds DNA; intact native HP1 is required for such interactions. Together, these observations suggest that HP1 may serve as a cross-linker in chromatin, linking nucleosomal DNA and nonhistone protein complexes to form higher order chromatin structures.  相似文献   

19.
N Bosco  T de Lange 《Chromosoma》2012,121(5):465-474
Mouse telomeres have been suggested to resemble common fragile sites (CFS), showing disrupted TTAGGG fluorescent in situ hybridization signals after aphidicolin treatment. This “fragile” telomere phenotype is induced by deletion of TRF1, a shelterin protein that binds telomeric DNA and promotes efficient replication of the telomeric ds[TTAGGG]n tracts. Here we show that the chromosome-internal TTAGGG repeats present at human chromosome 2q14 form an aphidicolin-induced CFS. TRF1 binds to and stabilizes CFS 2q14 but does not affect other CFS, establishing 2q14 as the first CFS controlled by a sequence-specific DNA binding protein. The data show that telomeric DNA is inherently fragile regardless of its genomic position and imply that CFS can be caused by a specific DNA sequence.  相似文献   

20.
We describe a novel chromosome structure in which telomeric sequences are present interstitially, at the apparent breakpoint junctions of structurally abnormal chromosomes. In the linear chromosomes with interstitial telomeric sequences, there were three sites of hybridization of the telomere consensus sequence within each derived chromosome: one at each terminus and one at the breakpoint junction. Telomeric sequences also were observed within a ring chromosome. The rearrangements examined were constitutional chromosome abnormalities with a breakpoint assigned to a terminal band. In each case (with the exception of the ring chromosome), an acentric segment of one chromosome was joined to the terminus of an apparently intact recipient chromosome. One case exhibited apparent instability of the chromosome rearrangement, resulting in somatic mosaicism. The rearrangements described here differ from the telomeric associations observed in certain tumors, which appear to represent end-to-end fusion of two or more intact chromosomes. The observed interstitial telomeric sequences appear to represent nonfunctional chromosomal elements, analogous to the inactivated centromeres observed in dicentric chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号