首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous aminopeptidase PC was isolated with yield 67% and purification degree 237 from the hepatopancreas of the Kamchatka crab Paralithodes camtshatica by ion-exchange chromatography on DEAE-Sepharose, hydrophobic chromatography on Phenyl-Sepharose, and gel-filtration on Sephadex G-150. The enzyme is a homodimer with a molecular mass 220 kD (110 x 2). Aminopeptidase PC has pI = 4.1. It hydrolyzes Leu-pNA optimally at pH 6.0 and at the optimum temperature 36-40 degrees C; in the presence of Ca2+ the enzyme is stable at pH 5.5-8.0. Aminopeptidase PC is activated by Ca2+, Mg2+, and Fe2+; it is completely inhibited by EDTA, o-phenanthroline, and bestatin. The enzyme contains four Zn atoms per molecule and is therefore a metalloaminopeptidase. The aminopeptidase PC can effectively cleave N-terminal Arg and Lys residues as well as Leu, Phe, and Met residues. Km and kcat values for hydrolysis of Leu-pNA were 0.075 mM and 0.19 sec-1 and for hydrolysis of Arg-pNA 0.078 mM and 0.48 sec-1, respectively. D-Amino acid residues cannot be cleaved. Thus, aminopeptidase PC of the Kamchatka crab has a mixed substrate specificity which is characteristic of some microbe aminopeptidases. Its N-terminal sequence ESVEIELPEGLSPLV is 46% coincident with that of yeast vacuolar aminopeptidase YSCA.  相似文献   

2.
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is approximately 680,000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits.  相似文献   

3.
A dipeptidyl aminopeptidase was identified in Streptococcus faecalis JH2SS and was partially purified (approximately 245-fold) by HPLC. Gel filtration chromatography indicated an Mr of 140 000. The partially purified enzyme exhibited a requirement for Co2+. The pH optimum for the hydrolysis of L-Val-L-Ala-p-nitroanilide was approximately 9.5. The apparent Km for this substrate was 0.22 mM. The enzyme preferentially hydrolysed X-Ala-Y substrates, but also utilized X-Pro-Y substrates, and therefore is most closely related to the mammalian dipeptidyl aminopeptidase II (EC 3.4.14.-). The enzyme was inhibited by p-chloromercuribenzoate, but not by iodoacetate, N-ethylmaleimide or the serine protease inhibitor phenylmethylsulphonyl fluoride.  相似文献   

4.
The aminopeptidase N (TH-4AP) of Streptomyces sp. TH-4 was purified from a culture supernatant. The purified enzyme had a molecular mass of 95 kDa. The gene encoding TH-4AP was cloned and sequenced. The primary structure of the protein possessed the PepN-conserved motif GxMEN and the zinc-binding motif HExxHx18E, and showed 88% identity with that of PepN from Streptomyces lividans strain 66. We succeeded in overproducing a His-tagged recombinant enzyme using Escherichia coli. The enzyme had a 1.5-fold higher activity in the presence of cobalt ions than in their absence. To evaluate the possible application of TH-4AP to decrease the content of bitter peptides, we investigated the ability of Streptomyces aminopeptidases to hydrolyze synthetic peptides by a coupling method using l-amino acid oxidase and peroxidase. The substrate specificity of TH-4AP toward synthetic peptides was significantly different from that toward aminoacyl-p-nitroanilide derivatives.  相似文献   

5.
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.  相似文献   

6.
A non-specific aminopeptidase from Aspergillus   总被引:1,自引:0,他引:1  
A fermentation broth supernatant of the Aspergillus oryzae strain ATCC20386 contains aminopeptidase activity that releases a wide variety of amino acids from natural peptides. The supernatant was fractionated by anion exchange chromatography. Based on the primary amino acid sequence data obtained from proteins in certain fractions, polymerase chain reaction (PCR) primers were made and a PCR product was generated. This PCR product was used to screen an A. oryzae cDNA library from which the full length gene was then obtained. Fusarium venenatum and A. oryzae were used as hosts for gene expression. Transformed strains of both F. venenatum and A. oryzae over-expressed an active aminopeptidase (E.C. 3.4.11), named aminopeptidase II. The recombinant enzyme from both fungal hosts appeared as smears on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After deglycosylation of the N-linked sugars, both samples were a sharp band at approximately 56 kDa and had identical N-terminal amino acid sequences. Aminopeptidase II is a metalloenzyme with, presumably, Zn in the active site. Using various natural peptides and para-nitroanilides (pNAs) of amino acids as substrates, the aminopeptidase was found to be non-specific. Only X-Pro bonds demonstrated resistance to hydrolysis catalyzed by this aminopeptidase. The optimal enzyme activity was observed at pH 9.5 and 55 degrees C. Among amino acid pNAs, Leu-pNA appears to have the highest value of bimolecular constant of 40 min(-1) mM(-1) (k(cat) = 230 min(-1); K(m) = 5.8 mM) at pH 7.5 and 21 degrees C. Among Xaa-Ala-Pro-Tyr-Lys-amide pentapeptides, the velocity of catalytic hydrolysis at pH 7.5 and 21 degrees C was in a decreasing order: Pro, Ala, Leu, Gly and Glu.  相似文献   

7.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   

8.
The membrane-bound form of aminopeptidase P (aminoacylprolyl-peptide hydrolase) (EC 3.4.11.9) was purified to apparent homogeneity from bovine lung microsomes. The enzyme was solubilized using phosphatidylinositol-specific phospholipase C (Bacillus thuringiensis), indicating that bovine lung amino-peptidase P is attached to membranes via a glycosylphosphatidylinositol anchor. The enzyme was purified 1900-fold with a yield of 25% by chromatography on decyl-agarose, omega-aminodecyl-agarose, a second decylagarose column, DEAE-Sephacel, and an ultrafiltration step. Native gradient polyacrylamide gel electrophoresis revealed a single stained protein band whose position in the gel corresponded to cleavage of the Arg1-Pro2 bond of bradykinin. The Mr was 360,000 by gel permeation chromatography and 95,000 by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate specificity of aminopeptidase P was determined using approximately 50 peptides with proline in the second position. The enzyme could hydrolyze lower NH2-terminal homologs of bradykinin, including Arg-Pro-Pro, which was used as the routine substrate in a rapid fluorescence assay performed in the absence of added Mn2+. Some peptides having NH2-terminal amino acids other than arginine were also cleaved. Aminopeptidase P appeared to favor peptides that had 2 proline residues or proline analogs in positions 2 and 3 of the substrate. In general, tripeptides having a single proline residue in position 2 were poor substrates. Aminopeptidase P was inhibited by a series of peptides, 3-8 residues long, having an NH2-terminal Pro-Pro sequence. The enzyme was also inhibited by metal-chelating agents, 2-mercaptoethanol (4 mM), p-chloromercuribenzenesulfonic acid, and NaCl at concentrations greater than or equal to 0.25 M. The purified enzyme had a pH optimum of 6.5-7.0 and was most stable in the basic pH range. A role for membrane-bound aminopeptidase P in the pulmonary inactivation of circulating bradykinin is proposed.  相似文献   

9.
Chitin deacetylase (Cda2p) (EC 3.5.1.41) from Saccharomyces cerevisiae has been purified from vegetative cells grown in galactose and further characterized. The enzyme is a glycoprotein with an apparent molecular mass of approximately 43 kDa and a carbohydrate content of approximately 18% by weight. With glycol chitin as substrate, the optimum temperature for enzyme activity is 50 degrees C and the pH optimum is 8.0. The enzyme requires at least two N-acetyl-D-glucosamine residues (chitobiose) for catalysis and is partially inhibited by acetate. Deglycosylation of the enzyme causes total loss of enzyme activity, which can be restored by the addition of COCl(2).  相似文献   

10.
A thiol-dependent aminopeptidase was purified from the cytosolic fraction of human placenta. The purified enzyme consisted of a single polypeptide chain with a mol wt of 95,000. The enzyme was most active in the neutral region with Ala-pNA as substrate, and the activity was increased about 20-fold in the presence of some -SH compounds. The results of substrate specificity studies indicated that the enzyme hydrolyzes bonds involving the amino groups of neutral and basic amino acid residues. However, higher thiol-dependent activity was only detected with neutral ones. The enzyme was strongly inhibited by microbial aminopeptidase inhibitors, puromycin, o-phenanthroline, and sulfhydryl reactive-reagents. As to several naturally occurring peptides tested, the enzyme showed N-terminal Tyr-releasing activity toward enkephalins and kinin-converting activity.  相似文献   

11.
Vimelysin is a unique metalloproteinase from Vibrio sp. T1800 exhibiting high activity at low temperature and high stability in organic solvents such as ethanol. A 1,821 bp open reading frame of the vimelysin gene encoded 607 amino acid residues consisting of an N-terminal pro-region, a mature enzyme, and a C-terminal pro-region. The mature enzyme region showed 80%, 57% and 35% sequence identity with the mature forms of vibriolysin from V. vulnificus, pseudolysin from Pseudomonas aeruginosa, and thermolysin from Bacillus thermoproteolyticus, respectively. The catalytic residues and zinc-binding motifs of metalloproteinases are well conserved in vimelysin. The vimelysin gene was expressed in E. coli JM109 cells and the recombinant enzyme was purified as a 38-kDa mature form from cell-free extracts. The purified recombinant enzyme is indistinguishable from the enzyme purified directly from Vibrio. To obtain mutants exhibiting higher stability in organic solvents, random mutations were introduced by error-prone PCR and 600 transformants were screened. The N123D mutant exhibits two times higher stability in organic solvents than the wild-type enzyme. A plausible mechanism for the stability of the N123D mutant in organic solvents was discussed based on homology models of vimelysin and the N123D mutant.  相似文献   

12.
Abstract: A dipeptidyl aminopeptidase III-type activity has been purified from the cytoplasm of guinea-pig brain using arginyl-arginyl-7-amido-4 methylcoumarin as substrate. The enzyme was purified 754-fold relative to the crude homogenate and with a 12.7% recovery. The purified enzyme was found to have a relative molecular weight of 85,000 and consists of one polypeptide chain of relative molecular weight 80,000, on the basis of its migration on calibrated sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel. It is highly sensitive to the presence of chelating agents, sulphydryl reactive agents, and the dipeptide Tyr-Tyr. Dithiothreitol (1 m M ) reduced activity by 28%, and 36 and 65% inhibition was noted with phenylmethylsulphonyl fluoride and puromycin (both at 1 m M ), respectively. Little or no inhibition was observed with bestatin, bacitracin, captopril, amastatin, and arphamenine B. The purified enzyme released dipeptide moieties from a wide range of peptides including enkephalin sequences and also angiotensin sequences up to the octapeptide angiotensin II. These sequences inhibited the hydrolysis of arginyl-arginyl-7-amido-4-methylcoumarin by dipeptidyl aminopeptidase III with K i values in the micromolar range. No hydrolysis was observed with angiotensin I or with peptide sequences containing more than 10 amino acids. No hydrolysis was observed also with peptide sequences containing a Pro residue on either side of the sissile bond. Peptides containing less than four amino acids were not hydrolysed.  相似文献   

13.
5'-Nucleotidase (5NU) in Dictyostelium discoideum is an enzyme that shows high substrate specificity to 5'-AMP. The enzyme has received considerable attention in the past because of the critical role played by cyclic AMP in cell differentiation in this organism. Degradation of cAMP by cAMP phosphodiesterase (PDE) produces 5'-AMP, the substrate of 5NU. During the time course of development, the enzyme activity of 5NU increases and becomes restricted to a narrow band of cells that form the interface between the prestalk/prespore zones. We have purified a polypeptide associated with 5NU enzyme activity. Protein sequence of this peptide was obtained from mass spectrometry and Edman degradation. Polymerase chain reaction PCR amplification of genomic DNA using degenerate oligonucleotides and a search of sequences of a cDNA project yielded DNA fragments with sequence corresponding to the peptide sequence of 5NU. In addition, a clone was found that corresponded to the classical 'alkaline phosphatase' (AP) as described in several organisms. The sequences of the 5NU and AP cDNAs were not similar, indicating they are the products of separate genes and that both genes exist in Dictyostelium. Analysis of the expression of 5nu during Dictyostelium development by Northern blotting determined that the gene is developmentally regulated. Southern blot analysis showed a single form of the 5nu gene. Targeted gene disruption and knockout mutagenesis using the 5nu sequences suggested that a 5nu mutation may be lethal.  相似文献   

14.
The Vibrio proteolyticus aminopeptidase is synthesized as a preproprotein and then converted into an active enzyme by cleavage of the N-terminal propeptide. In recombinant Escherichia coli, however, the aminopeptidase is not processed correctly and the less-active form that has the N-terminal propeptide accumulates in the culture medium. Recently, we isolated a novel vibriolysin that was expressed as an active form in E. coli by random mutagenesis; this enzyme shows potential as a candidate enzyme for the processing of aminopeptidase. The E. coli cells were engineered to co-express the novel vibriolysin along with aminopeptidase. Co-expression of vibriolysin resulted in an approximately 13-fold increase in aminopeptidase activity, and a further increase was observed in the form lacking its C-terminal propeptide. The active aminopeptidase was purified from the culture supernatant including the recombinant vibriolysin by heat treatment and ion exchange and hydroxyapatite chromatography with high purity and 35% recovery rate. This purified aminopeptidase effectively converted methionyl-human growth hormone (Met-hGH) to hGH. Thus, this co-expression system provides an efficient method for producing active recombinant V. proteolyticus aminopeptidase.  相似文献   

15.
An intracellular arginine--specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of -50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-beta-naphthylamide as a substrate was at 37 degrees C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to AmpS of Bacillus cereus and AP II of B. thuringensis.  相似文献   

16.
M Tokioka-Terao  K Hiwada  T Kokubu 《Enzyme》1985,33(4):181-187
A radioimmunoassay for the measurement of aminopeptidase (microsomal) (AP) in human serum was developed by using antiserum to human kidney AP. AP purified from kidney and AP present in normal serum and in serum from a patient with obstructive jaundice gave parallel logit-log transformation lines, suggesting immunological identity. The mean concentration of AP in normal serum (n = 104) was 1.33 +/- 0.30 (mean +/- SD) micrograms/ml. Men had significantly higher serum AP levels (1.41 +/- 0.30 micrograms/ml) (p less than 0.005) than women (1.24 +/- 0.28 micrograms/ml). Serum AP levels of patients with hepatoma (2.26 +/- 0.87 micrograms/ml) and cancer of the pancreas or the biliary tract (2.90 +/- 0.67 micrograms/ml) were significantly higher (p less than 0.005) than those of normal subjects. Patients with acute and chronic hepatitis (2.06 +/- 0.66 micrograms/ml) also had significantly higher serum AP levels (p less than 0.005) than normal subjects. In pregnant women, however, the increase in AP activity without the increase in AP concentration showed that the increased AP activity was due to an enzyme other than AP. The enzyme levels and activities in normal serum as well as in patients' sera were significantly correlated (normal, r = 0.77; patients, r = 0.95). Based on the specific activity of AP purified from human plasma, the enzyme activity splitting L-alanyl-beta-naphthylamide is due almost completely to AP in normal subjects and in patients with hepatobiliary diseases.  相似文献   

17.
Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8 kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.  相似文献   

18.
Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles.  相似文献   

19.
R R Watson  K L Lee 《Sabouraudia》1978,16(1):69-78
Two aminopeptidases (arylamidases) were isolated and partially purified from Histoplasma capsulatum. The larger molecular weight enzyme was a proline iminopeptidase and hydrolyzed primarily a synthetic substrate, L-prolyl-beta-napthylamide. The other aminopeptidase was less substrate specific and hydrolyzed rapidly the following amino acid beta-napthylamides (beta NA): L-arginyl-beta NA greater than L-lysyl-beta NA greater than -L-4-methoxy-leucyl-beta NA greater than L-leucyl-beta NA greater than L-phenylalanyl-beta NA greater than L-alanyl-beta NA. The proline iminopeptidase was purified 1420 fold while the leucine aminopeptidase was purified 650 fold with good recovery.  相似文献   

20.
NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号