首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Huntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates.  相似文献   

2.
Although the linkage of polyglutamine (poly-Q) repeat expansion in the androgen receptor (AR) to Kennedy's disease (X-linked spinal and bulbar muscular atrophy) was a major step forward, the detailed molecular mechanism of how the change in poly-Q length contributes to the disease remains unclear. Here we report the identification of a nuclear G-protein, Ras-related nuclear protein/ARA24, as the first AR coactivator that can bind differentially with different lengths of poly-Q within AR. In the yeast and mammalian reciprocal interacting assays, our data suggested the interaction of AR N-terminal domain with ARA24 diminishes as the poly-Q length increases. The coactivation of ARA24 also diminishes with the poly-Q expansion within AR. Deletion of the acidic hexapeptide (DEDDDL) at the C terminus of ARA24 further enhances its AR coactivation. Together, our data suggest that poor interaction and weaker coactivation of ARA24 to the longer poly-Q AR in the X-linked spinal and bulbar muscular atrophied AR could contribute to the weaker transactivation of AR. The consequence of poor interaction and weak coactivation may eventually lead to the partial androgen insensitivity during the development of Kennedy's disease.  相似文献   

3.
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is one of a group of progressive neurodegenerative diseases resulting from a polyglutamine repeat expansion. In SBMA the polymorphic trinucleotide CAG repeat in exon 1 of the androgen receptor (AR) gene is increased, resulting in expansion of a polyglutamine tract. Patient autopsy material reveals neuronal intranuclear inclusions (NII) in affected regions that contain only amino-terminal epitopes of the AR. Cell models have previously been unable to produce intranuclear inclusions containing only a portion of the AR. We report here the creation of an inducible cell model of SBMA that reproduces this important characteristic of disease pathology. PC12 cells expressing highly expanded AR form ubiquitinated intranuclear inclusions containing amino-terminal epitopes of the AR as well as heat shock proteins. Inclusions appear as distinct granular electron-dense structures in the nucleus by immunoelectron microscopy. Dihydrotestosterone treatment of mutant AR-expressing cells results in increased inclusion load. This model mimics the formation of ubiquitinated intranuclear inclusions containing the amino-terminal portion of AR observed in patient tissue and reveals a role for ligand in the pathogenesis of SBMA.  相似文献   

4.
Androgen receptor and Kennedy disease/spinal bulbar muscular atrophy   总被引:1,自引:0,他引:1  
Kennedy Disease/Spinal Bulbar Muscular Atrophy (KD/SBMA) is a progressive neurodegenerative disease caused by genetic polyglutamine expansion of the androgen receptor. We have recently found that overexpression of wildtype androgen receptor in skeletal muscle of transgenic mice results in a KD/SBMA phenotype. This surprising result challenges the orthodox view that KD/SBMA requires expression of polyglutamine expanded androgen receptor within motoneurons. Theories relating to the etiology of this disease drawn from studies of human patients, cellular and mouse models are considered with a special emphasis on potential myogenic contributions to as well as the molecular etiology of KD/SBMA.  相似文献   

5.
6.
7.
Abstract : X-linked spinal and bulbar muscular atrophy (SBMA), Kennedy's disease, is a degenerative disease of the motor neurons that is associated with an increase in the number of CAG repeats encoding a polyglutamine stretch within the androgen receptor (AR). Recent work has demonstrated that the gene products associated with open reading frame triplet repeat expansions may be substrates for the cysteine protease cell death executioners, the caspases. However, the role that caspase cleavage plays in the cytotoxicity associated with expression of the disease-associated alleles is unknown. Here, we report the first conclusive evidence that caspase cleavage is a critical step in cytotoxicity ; the expression of the AR with an expanded polyglutamine stretch enhances its ability to induce apoptosis when compared with the normal AR. The AR is cleaved by a caspase-3 subfamily protease at Asp146, and this cleavage is increased during apoptosis. Cleavage of the AR at Asp146 is critical for the induction of apoptosis by AR, as mutation of the cleavage site blocks the ability of the AR to induce cell death. Further, mutation of the caspase cleavage site at Asp146 blocks the ability of the SBMA AR to form perinuclear aggregates. These studies define a fundamental role for caspase cleavage in the induction of neural cell death by proteins displaying expanded polyglutamine tracts, and therefore suggest a strategy that may be useful to treat neurodegenrative diseases associated with polyglutamine repeat expansions.  相似文献   

8.
Abstract Several neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeast Saccharomyces cerevisiae to investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100-600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.  相似文献   

9.
Spinal bulbar muscular atrophy (SBMA) is one of a family of inherited neurodegenerative diseases caused by expansion of CAG encoding polyglutamine repeats; in SBMA the affected gene is the androgen receptor. To understand further the mechanisms that lead to neuronal cell death in SBMA, we generated SHSY5Y neuroblastoma cell lines that stably express identical levels of wild-type (19 polyglutamine repeat) or SBMA (52 polyglutamine repeat) androgen receptor. Parental SHSY5Y cells do not express detectable levels of the androgen receptor. In the absence of androgen, the transfected cell lines have similar phenotypes and growth characteristics to parental SHSY5Y cells. However, upon treatment with androgen, both cell lines undergo a marked dose-dependent loss of viability; this loss was significantly greater in cells expressing the SBMA receptor. Morphological analyses of the androgen treated cells revealed that cell death bore hallmarks of apoptosis involving altered nuclear morphology and cleavage of poly(ADP-ribose) polymerase and of caspase 3 in both wild-type and SBMA cell lines. The caspase inhibitor VAD-fmk was able to decrease loss of viability of both cell lines on exposure to androgen.  相似文献   

10.
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease that affects males. It is caused by the expansion of a polyglutamine (polyQ) tract in androgen receptors. Female carriers are usually asymptomatic. No specific treatment has been established. Our transgenic mouse model carrying a full-length human androgen receptor with expanded polyQ has considerable gender-related motor impairment. This phenotype was abrogated by castration, which prevented nuclear translocation of mutant androgen receptors. We examined the effect of androgen-blockade drugs on our mouse model. Leuprorelin, a lutenizing hormone-releasing hormone (LHRH) agonist that reduces testosterone release from the testis, rescued motor dysfunction and nuclear accumulation of mutant androgen receptors in male transgenic mice. Moreover, leuprorelin treatment reversed the behavioral and histopathological phenotypes that were once caused by transient increases in serum testosterone. Flutamide, an androgen antagonist promoting nuclear translocation of androgen receptors, yielded no therapeutic effect. Leuprorelin thus seems to be a promising candidate for the treatment of SBMA.  相似文献   

11.
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.  相似文献   

12.
Polyglutamine tract expansion in androgen receptor is a recognized cause of spinal and bulbar muscular atrophy (SBMA), an X-linked motor neuronopathy. Similar mutations have been identified in proteins associated with other neurodegenerative diseases. Recent studies have shown that amplified polyglutamine repeat stretches form cellular aggregates that may be markers for these neurodegenerative diseases. Here we describe conditions that lead to aggregate formation by androgen receptor with polyglutamine stretch amplification. In transfection experiments, the mutant, compared with the wild-type receptor, was delayed in its cytoplasmic-nuclear translocation and formed large cytoplasmic aggregates in the presence of androgen. The cytoplasmic environment appears crucial for this aggregation, since retention of both the wild-type and mutant receptors in this cellular compartment by the deletion of their nuclear localization signals resulted in massive aggregation. Conversely, rapid nuclear transport of both receptors brought about by deletion of their ligand binding domains did not result in aggregate formation. However, androgen antagonists that altered the conformation of the ligand binding domain and promoted varying rates of cytoplasmic-nuclear translocation all inhibited aggregate formation. This demonstrates that in addition to the cytoplasmic localization, a distinct contribution of the ligand binding domain of the receptor is necessary for the aggregation. The finding that antiandrogens inhibit aggregate formation may provide the basis for in vivo determination of the role of these structures in SBMA.  相似文献   

13.
14.
Kennedy's disease is a degenerative disorder of motor neurons caused by the expansion of a glutamine tract near the amino terminus of the androgen receptor (AR). Ligand binding to the receptor is associated with several post-translational modifications, but it is poorly understood whether these affect the toxicity of the mutant protein. Our studies now demonstrate that mutation of lysine residues in wild-type AR that are normally acetylated in a ligand-dependent manner mimics the effects of the expanded glutamine tract on receptor trafficking, misfolding, and aggregation. Mutation of lysines 630 or 632 and 633 to alanine markedly delays ligand-dependent nuclear translocation. The K632A/K633A mutant also undergoes ligand-dependent misfolding and aggregation similar to the expanded glutamine tract AR. This acetylation site mutant exhibits ligand-dependent 1C2 immunoreactivity, forms aggregates that co-localize with Hsp40, Hsp70, and the ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP), and inhibits proteasome function. Ligand-dependent nuclear translocation of the wild-type receptor and misfolding and aggregation of the K632A/K633A mutant are blocked by radicicol, an Hsp90 inhibitor. These data identify a novel role for the acetylation site as a regulator of androgen receptor subcellular distribution and folding and indicate that ligand-dependent aggregation is dependent upon intact Hsp90 function.  相似文献   

15.
16.
Huntington disease derives from a critically expanded polyglutamine tract in the huntingtin (Htt) protein; a similar polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy. AR activity also plays an essential role in prostate cancer. Molecular mechanisms that regulate Htt and AR degradation are not well understood but could have important therapeutic implications. We find that a pentapeptide motif (FQKLL) within the Htt protein regulates its degradation and subcellular localization to cytoplasm puncta. Disruption of the motif by alanine substitution at the hydrophobic residues increases the steady state level of the protein. Pulsechase analyses indicate that the motif regulates degradation. A similar motif (FQNLF) has corresponding activities in the AR protein. Transfer of the Htt motif with five flanking amino acids on either side to YFP reduces the steady state YFP level by rendering it susceptible to proteasome degradation. This work defines a novel proteasome-targeting motif that is necessary and sufficient to regulate the degradation of two disease-associated proteins.  相似文献   

17.
BackgroundKennedy’s disease/Spinobulbar muscular atrophy (KD/SBMA) is a degenerative neuromuscular disease affecting males. This disease is caused by polyglutamine expansion mutations of the androgen receptor (AR) gene. Although KD/SBMA has been traditionally considered a motor neuron disease, emerging evidence points to a central etiological role of muscle. We previously reported a microarray study of genes differentially expressed in muscle of three genetically unique mouse models of KD/SBMA but were unable to detect those which are androgen-dependent or are associated with onset of symptoms.Conclusions/SignificanceBy comparing the current results with those from the three previously reported models we were able to identify KD/SBMA candidate genes that are androgen dependent, and occur early in the disease process, properties which are promising for targeted therapeutics.  相似文献   

18.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.  相似文献   

19.
Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold.  相似文献   

20.
Katsuno M  Adachi H  Kume A  Li M  Nakagomi Y  Niwa H  Sang C  Kobayashi Y  Doyu M  Sobue G 《Neuron》2002,35(5):843-854
Spinal and bulbar muscular atrophy (SBMA) is a polyglutamine disease caused by the expansion of a CAG repeat in the androgen receptor (AR) gene. We generated a transgenic mouse model carrying a full-length AR containing 97 CAGs. Three of the five lines showed progressive muscular atrophy and weakness as well as diffuse nuclear staining and nuclear inclusions consisting of the mutant AR. These phenotypes were markedly pronounced in male transgenic mice, and dramatically rescued by castration. Female transgenic mice showed only a few manifestations that markedly deteriorated with testosterone administration. Nuclear translocation of the mutant AR by testosterone contributed to the phenotypic difference with gender and the effects of hormonal interventions. These results suggest the therapeutic potential of hormonal intervention for SBMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号