首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Neutrophil elastase and cathepsin G are abundant intracellular neutrophil proteinases that have an important role in destroying ingested particles. However, when neutrophils degranulate, these proteinases are released and can cause irreparable damage by degrading host connective tissue proteins. Despite abundant endogenous inhibitors, these proteinases are protected from inhibition because of their ability to bind to anionic surfaces. Plasminogen activator inhibitor type-1 (PAI-1), which is not an inhibitor of these proteinases, possesses properties that could make it an effective inhibitor of neutrophil proteinases if its specificity could be redirected. PAI-1 efficiently inhibits surface-sequestered proteinases, and it efficiently mediates rapid cellular clearance of PAI-1-proteinase complexes. Therefore, we examined whether PAI-1 could be engineered to inhibit and clear neutrophil elastase and cathepsin G. By introducing specific mutations in the reactive center loop of wild-type PAI-1, we generated PAI-1 mutants that are effective inhibitors of both proteinases. Kinetic analysis shows that the inhibition of neutrophil proteinases by these PAI-1 mutants is not affected by the sequestration of neutrophil elastase and cathepsin G onto surfaces. In addition, complexes of these proteinases and PAI-1 mutants are endocytosed and degraded by lung epithelial cells more efficiently than either the neutrophil proteinases alone or in complex with their physiological inhibitors, alpha1-proteinase inhibitor and alpha1-antichymotrypsin. Finally, the PAI-1 mutants were more effective in reducing the neutrophil elastase and cathepsin G activities in an in vivo model of lung inflammation than were their physiological inhibitors.  相似文献   

2.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

3.
The elastases]     
Elastases are proteinases capable of solubilizing fibrous elastin. They may belong to the class of serine proteinases, cysteine proteinases and metalloproteinases. Mammalian elastases occur mainly in the pancreas and the phagocytes. Among non-mammalian elastases there is a great variety of bacterial metallo and serine elastases. The elastolytic activity varies from one elastase to another and is usually not correlated with the catalytic efficiency of these proteinases. One may measure this activity using native or labelled elastins. With pure elastases one may use synthetic substrates. There is a large number of natural (proteins) and synthetic elastase inhibitors. Elastases play a pathologic role in pulmonary emphysema, cystic fibrosis, infections, inflammation and atherosclerosis.  相似文献   

4.
Three proteinases from the azurophilic granules of horse leucocytes are typical elastases degrading elastin at neutral pH. Both proteinases: 1 and 2A exhibit similar elastinolytic activity, comparable with human leucocyte elastase (HLE). In relation to human enzyme, elastase 2B shows several-fold higher activity, which is comparable to the porcine pancreatic elastase activity (PPE). Similarly to HLE elastinolytic activity of the horse proteinases increases at higher ionic strength: twofold in case of 1 or 2A and fivefold for 2B. Significant activity observed during degradation of homologous lung elastin, implies the possible role of these enzymes during pathological injury of connective tissue in the lower respiratory tract and suggests similar pathogenesis of horse and human pulmonary emphysema.  相似文献   

5.
We used antibodies to human leukocyte ("neutrophil") elastase and cathepsin G to localize the corresponding antigens in human neutrophils, monocytes, and alveolar macrophages by immunohistochemistry. Furthermore, we combined immunogold localization with enzyme histochemistry to localize proteinase antigens and endogenous peroxidase activity in the same sections. As expected, all neutrophils contained both elastase and cathepsin G, and the proteinases localized to granules with peroxidase activity. In contrast, marked heterogeneity in monocyte staining for elastase, cathepsin G, and endogenous peroxidase was found. Sixty percent or more were unstained, while the remainder varied greatly in staining intensity. The elastase and cathepsin G in monocytes were localized by immunoelectron microscopy, combined with histochemistry, to cytoplasmic granules which had peroxidase activity. Alveolar macrophages were unstained. Therefore, a subpopulation of peripheral blood monocytes contains leukocyte elastase and cathepsin G in a cell compartment from which these enzymes may potentially be released into the extracellular space. The occurrence of peroxidase and neutral proteinases in the same granules in monocytes could permit the H2O2-myeloperoxidase-halide system and the neutral proteinases to act in concert in such functions as microbe killing and extracellular proteolysis.  相似文献   

6.
Human mucus proteinase inhibitor (MPI) consists of 107 amino acids arranged in two domains showing high homology to each other. This protein is an inhibitor of different serine proteinases including trypsin, chymotrypsin, leukocyte elastase and cathepsin G. On the basis of sequence comparisons it has been suggested that the first domain inhibits trypsin, whereas the second one was thought to be active against chymotrypsin and elastase. To prove the location of the different inhibitory activities gene fragments for both domains have been cloned separately and expressed in Escherichia coli. Inhibition assays with the isolated recombinant domains showed that the second domain is active against chymotrypsin, neutrophil elastase and trypsin, whereas for the first domain only a weak activity against trypsin could be detected. These results suggest that the inhibitory activities of the native molecule towards these three proteinases are all located in the second domain.  相似文献   

7.
Cell associated elastase activities of rat mammary tumour cells   总被引:1,自引:0,他引:1  
As part of our studies into the role of tumour cell proteinases in cancer invasion, we have adapted a fluorogenic assay to measure the elastase activities of intact rat mammary adenocarcinoma cells using the elastase specific substrates Cbz-Ala-Ala-Pro-Val-6-aminoquinoline and Ac-Ala-Ala-Pro-Ala-7-amino-4-methylcoumarin. This is a sensitive assay which enables rapid (30-120 min) measurement of enzyme activities under conditions of physiological pH and ionic strength and can differentiate between cell-associated and secreted enzyme activities. As the substrates are non-toxic and the method is non-invasive, cells can be reclaimed for further studies. This method thus provides a useful means for screening intact cells for elastase activity. Cell-surface elastase extracts were inhibited by phenylmethylsulphonyl fluoride but not by EDTA, indicating that they are serine proteinases. Extracts also degraded insoluble elastin confirming that these rat mammary adenocarcinoma cells produce elastase.  相似文献   

8.
Serine proteinases of human polymorphonuclear neutrophils play an important role in neutrophil-mediated proteolytic events; however, the non-oxidative mechanisms by which the cells can degrade extracellular matrix in the presence of proteinase inhibitors have not been elucidated. Herein, we provide the first report that human neutrophils express persistently active cell surface-bound human leukocyte elastase and cathepsin G on their cell surface. Unstimulated neutrophils have minimal cell surface expression of these enzymes; however, phorbol ester induces a 30-fold increase. While exposure of neutrophils to chemoattractants (fMLP and C5a) stimulates modest (two- to threefold) increases in cell surface expression of serine proteinases, priming with concentrations of lipopolysaccharide as low as 100 fg/ml leads to striking (up to 10-fold) increase in chemoattractant-induced cell surface expression, even in the presence of serum proteins. LPS-primed and fMLP-stimulated neutrophils have approximately 100 ng of cell surface human leukocyte elastase activity per 10(6) cells. Cell surface- bound human leukocyte elastase is catalytically active, yet is remarkably resistant to inhibition by naturally occurring proteinase inhibitors. These data indicate that binding of serine proteinases to the cell surface focuses and preserves their catalytic activity, even in the presence of proteinase inhibitors. Upregulated expression of persistently active cell surface-bound serine proteinases on activated neutrophils provides a novel mechanism to facilitate their egress from the vasculature, penetration of tissue barriers, and recruitment into sites of inflammation. Dysregulation of the cell surface expression of these enzymes has the potential to cause tissue destruction during inflammation.  相似文献   

9.
The degradation of human lung elastin by neutrophil proteinases   总被引:13,自引:0,他引:13  
Human lung elastin has been isolated by both a degradative and nondegradative procedure and the products obtained found to have amino acid compositions comparable to published results. These elastin preparations, when utilized as substrates for various mammalian proteinases, were solubilized by porcine elastase at a rate six times faster than human leukocyte elastase. Leukocyte cathepsin G also solubilized lung elastin but only at 12% of the rate of the leukocyte elastase. In all cases the elastin prepared by nondegradative techniques proved to be the best substrate in these studies. The differences in the rate of digestion of elastin of the two elastolytic proteinases was readily attributed to the specificity differences of each enzyme as judged by carboxyterminal analysis of solubilized elastin peptides. The plasma proteinase inhibitors, alpha-1-proteinase inhibitor and alpha-2-macroglobulin abolished the elastolytic activity of both leukocyte enzymes, while alpha-1-antichymotrypsin specifically inactivated cathespsin G. Two synthetic inhibitors, Me-O-Suc-Ala-Ala-Pro-Val-CH2Cl (for elastase and Z-Gly-Leu-Phe-CH2Cl (for cathepsin G) were equally effective in abolishing the elastolytic activity of the two neutrophil enzymes. However, inhibition of leukocyte elastase by alpha-1-proteinase inhibitor was significantly suppressed if the enzyme was preincubated with elastin prior to addition of the inhibitor.  相似文献   

10.
Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.  相似文献   

11.
Serine proteinases from inflammatory cells, including polymorphonuclear neutrophils, are involved in various inflammatory disorders, like pulmonary emphysema and rheumatoid arthritis. Inhibitors of these serine proteinases are potential drug candidates for the treatment of these disorders, since they prevent the unrestricted proteolysis. This study describes a novel specific antistasin-type inhibitor of neutrophil serine proteinases, we called Fahsin. This inhibitor was purified from the Nile leech Limnatis nilotica, sequenced and heterologously expressed using a synthetic gene in the methylotrophic yeast Pichia pastoris, yielding 0.5 g(-l) of the protein in the culture medium. Recombinant Fahsin was purified to homogeneity and characterised by N-terminal amino acid sequencing and mass spectrometry. Inhibition-kinetic analysis showed that recombinant Fahsin is a fast, tight-binding inhibitor of human neutrophil elastase with inhibition constant in the nanomolar range. Furthermore, recombinant Fahsin was, in contrast to various other neutrophil elastase inhibitors, insensitive to chemical oxidation and biological oxidation via myeloperoxidase-generated free oxygen radicals. Thus, Fahsin constitutes a novel member of a still expanding family of naturally occurring inhibitors of serine proteinases with potential therapeutic use for treatment of human diseases.  相似文献   

12.
Rat leukocyte elastase has been purified successively by AH-Sepharose Kappa-elastin affinity chromatography and by ion exchange chromatography on a carboxymethyl Sephadex resin. It has great similarities with human leukocyte elastase in its molecular weight, substrate specificity and inhibitory profile. The effect of rat leukocyte elastase inhibitors in influencing the chemotactic response of rat PMN to fMetLeuPhe has been compared to that of other proteinase inhibitors. The results indicated that oleoyl (Ala)2ProValCH2Cl, a specific inhibitor of human and rat leukocyte elastases and Eglin C, which also inhibits human and rat cathepsin G, are among the powerful inhibitors of rat PMN chemotaxis induced by the formyl oligopeptide. This suggests that these neutral proteinases, in addition to their known participation in connective tissue catabolism, could play a role in PMN locomotion and chemotaxis.  相似文献   

13.
Neutrophil elastase is thought to contribute to the lung pathology in patients with cystic fibrosis (CF). Therefore, intrapulmonary application of elastase inhibitors might be beneficial for these patients. Inactivation of such inhibitors by bacterial proteinases, however, is an important consideration in this therapy. We studied the effects of Staphylococcus aureus proteinase (STAP) and Pseudomonas aeruginosa elastase (PsE) on native (alpha 1-AT) and recombinant (rAAT) alpha 1-antitrypsin, recombinant secretory leukocyte proteinase inhibitor (rSLPI) and the leech inhibitor eglin C. All inhibitors were inactivated by these bacterial proteinases showing pronounced differences in their susceptibilities to proteolytic cleavage. Comparing the turnover rate (mol of inhibitor inactivated by one mol bacterial proteinase/min), rAAT and alpha 1-AT were approximately 20,000-fold more susceptible to STAP than rSLPI and 50,000-fold more susceptible than eglin C. Pseudomonas aeruginosa elastase inactivated all inhibitors more rapidly than STAP. rAAT and alpha 1-AT were 13-fold and 17,000-fold more susceptible than rSLPI and eglin C, respectively. Incubation of the rAAT-elastase complex with equimolar amounts of STAP did not result in release of elastase activity. Upon simultaneous addition of STAP and leukocyte elastase to rAAT, there was undisturbed elastase inhibition indicating that complex formation with elastase proceeded at a faster rate than inactivation of rAAT by the bacterial proteinase. From these results of inactivation in vitro and considering the immunogenic potential of the inhibitors studied here, we conclude that rSLPI may be the appropriate choice for anti-elastase therapy in CF.  相似文献   

14.
The conversion of inter-alpha-trypsin inhibitor (I alpha I) into active, acid-stable derivatives by proteolytic degradation has been tested with 10 different proteinases. Of these, only plasma kallikrein, cathepsin G, neutrophil elastase, and the Staphylococcus aureus V-8 proteinase were found to be effective, each releasing more than 50% of this activity. However, a strong correlation between inhibitor degradation and significant release of acid-stable activity could only be found with the V-8 enzyme. Inhibition kinetics for the interaction of native I alpha I, the inhibitory fragment released by digestion with S. aureus V-8 proteinase, or the related urinary trypsin inhibitor, with seven different proteinases indicated that all had essentially identical Ki values with an individual enzyme and, where measurements were possible, nearly identical second order association rate constants. Significantly, none of the five human proteinases tested, including trypsin, chymotrypsin, plasmin, neutrophil elastase, and cathepsin G, would appear to have low enough Ki values to be physiologically relevant. Thus, the role of native I alpha I or its degradation products in controlling a specific proteolytic activity is still unknown.  相似文献   

15.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

16.
The interactions of mouse murinoglobulin and alpha-macroglobulin with several proteinases were investigated by filtration and by assays of amidolytic activity towards synthetic substrates in the presence of proteinaceous enzyme inhibitors as well as assays of the inhibition of proteolytic activity. Mouse alpha-macroglobulin formed complexes with thrombin, clotting factor Xa, plasmin, pancreatic kallikrein, plasma kallikrein, submaxillary gland trypsin-like proteinase, neutrophil elastase, and pancreatic elastase. These complexes lost the proteolytic activities against high-molecular-weight substrates, but protected the active sites of the enzymes from inactivation by their proteinaceous inhibitors. Mouse murinoglobulin showed essentially the same properties except (i) that it did not form a complex with the clotting factor Xa, and (ii) that it did not protect plasma kallikrein, neutrophil elastase or submaxillary proteinase from inactivation by their proteinaceous inhibitors, although it formed complexes with these proteinases. No interaction was detected between Clostridium histolyticum collagenase and murinoglobulin or alpha-macroglobulin. These results indicate (i) that murinoglobulin has a proteinase-binding spectrum similar to that of alpha-macroglobulin, but is weaker in the ability to protect the bound proteinases from inactivation by the proteinaceous inhibitors than alpha-macroglobulin and (ii) that mouse alpha-macroglobulin has essentially the same inhibitory spectrum as the human homologue.  相似文献   

17.
Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.  相似文献   

18.
Novel roles of protease inhibitors in infection and inflammation   总被引:12,自引:0,他引:12  
The local balance between proteinase inhibitors and proteinases determines local proteolytic activity. Various studies have demonstrated the importance of serine proteinase inhibitors in regulating the activity of serine proteinases that are released by leucocytes during inflammation. Recently it has been shown that these inhibitors may also display functions that are distinct from those associated with the inhibition of leucocyte-derived proteinases. In this review the results of selected studies focusing on three inhibitors of neutrophil elastase, i.e. alpha(1)-proteinase inhibitor, secretory leucocyte proteinase inhibitor and elafin, are presented, with the aim of illustrating their possible involvement in the regulation of inflammation, host defence against infection, tissue repair and extracellular matrix synthesis.  相似文献   

19.
Inhibition of leucocyte elastase by heparin and its derivatives.   总被引:3,自引:0,他引:3       下载免费PDF全文
Leucocyte proteinases, e.g. leucocyte elastase and cathepsin G, are inhibited by heparin. The activities of pig pancreatic and Pseudomonas aeruginosa elastases are unaffected by this polysaccharide. Heparin derivatives of known Mr and degree of sulphation were isolated. The inhibition of leucocyte elastase by these oligosaccharides can be classified as tight-binding hyperbolic non-competitive. Ki values ranged from 40 nM to 100 microM and were found to be inversely correlated with the chain length of the oligosaccharides. Desulphated compounds lacked inhibitory potential towards leucocyte elastase. Over-O-sulphated di- and tetra-saccharides are more potent inhibitors than their over-N-sulphated counterparts. It is proposed that the therapeutic use of heparin and its derivatives could be extended to disease states such as emphysema and rheumatoid arthritis, where the role of leucocyte elastase has been clearly established.  相似文献   

20.
Human alpha1-proteinase inhibitor (alpha1-PI) is responsible for the tight control of neutrophil elastase activity which, if down regulated, may cause local excessive tissue degradation. Many bacterial proteinases can inactivate alpha1-PI by hydrolytic cleavage within its reactive site, resulting in the down regulation of elastase, and this mechanism is likely to contribute to the connective tissue damage often associated with bacterial infections. Another pathway of the inactivation of alpha1-PI is reversible and involves oxidation of a critical active-site methionine residue that may influence inhibitor susceptibility to proteolytic inactivation. Hence, the aim of this work was to determine whether this oxidation event might affectthe rate and pattern of the cleavage of the alpha1-PI reactive-site loop by selected bacterial proteinases, including thermolysin, aureolysin, serralysin, pseudolysin, Staphylococcus aureus serine proteinase, streptopain, and periodontain. A shift of cleavage specificity was observed after alpha1-PI oxidation, with a preference for the Glu354-Ala355 bond by most of the proteinases tested. Only aureolysin and serralysin cleave the oxidized form of alpha1-PI faster than the native inhibitor, suggesting that bacteria which secrete these metalloproteinases may specifically take advantage of the host defense oxidative mechanism to accelerate elimination of alpha1-PI and, consequently, tissue degradation by neutrophil elastase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号