首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
2.
Presence of leader sequences in the mRNA of mouse hepatitis virus.   总被引:32,自引:24,他引:8  
  相似文献   

3.
4.
Wu HY  Brian DA 《Journal of virology》2007,81(7):3206-3215
Coronaviruses have a positive-strand RNA genome and replicate through the use of a 3' nested set of subgenomic mRNAs each possessing a leader (65 to 90 nucleotides [nt] in length, depending on the viral species) identical to and derived from the genomic leader. One widely supported model for leader acquisition states that a template switch takes place during the generation of negative-strand antileader-containing templates used subsequently for subgenomic mRNA synthesis. In this process, the switch is largely driven by canonical heptameric donor sequences at intergenic sites on the genome that match an acceptor sequence at the 3' end of the genomic leader. With experimentally placed 22-nt-long donor sequences within a bovine coronavirus defective interfering (DI) RNA we have shown that matching sites occurring anywhere within a 65-nt-wide 5'-proximal genomic acceptor hot spot (nt 33 through 97) can be used for production of templates for subgenomic mRNA synthesis from the DI RNA. Here we report that with the same experimental approach, template switches can be induced in trans from an internal site in the DI RNA to the negative-strand antigenome of the helper virus. For these, a 3'-proximal 89-nt acceptor hot spot on the viral antigenome (nt 35 through 123), largely complementary to that described above, was found. Molecules resulting from these switches were not templates for subgenomic mRNA synthesis but, rather, ambisense chimeras potentially exceeding the viral genome in length. The results suggest the existence of a coronavirus 5'-proximal partially double-stranded template switch-facilitating structure of discrete width that contains both the viral genome and antigenome.  相似文献   

5.
During the replication of equine arteritis virus (EAV) six subgenomic mRNAs are synthesized. We present evidence that the viral mRNAs form a 3'-coterminal nested set and contain a common leader sequence of 208 nucleotides which is encoded by the 5'-end of the genome. The leader is joined to the bodies of mRNA 5 and 6 at positions defined by the sequence 5' UCAAC 3'. The part of the leader sequence flanking the UCAAC motif is very similar to the 5'-splice site of the Tetrahymena pre-rRNA. A possible internal guide sequence has been identified 43 nucleotides downstream of the leader sequence on the genome. Hybridization analysis shows that all EAV intracellular RNAs contain the leader sequence. These data imply that the viral subgenomic mRNAs are composed of leader and body sequences which are non-contiguous on the genome.  相似文献   

6.
7.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.  相似文献   

8.
9.
10.
The minus-sense RNA genome of measles virus serves as a template for synthesizing plus-sense RNAs of genomic length (antigenomes) and subgenomic length [poly(A)+ RNAs]. To elucidate how these different species are produced in vivo, RNA synthesized from the 3'-proximal N gene was characterized by Northern RNA blot and RNase protection analyses. The results showed that measles virus produced three size classes of plus-sense N-containing RNA species corresponding to monocistronic N RNA, bicistronic NP RNA, and antigenomes. Unlike vesicular stomatitis virus, measles virus does not produce a detectable free plus-sense leader RNA. Instead, although antigenomes invariably contain a leader sequence, monocistronic and bicistronic poly(A)+ N-containing RNAs are synthesized either without or with a leader sequence. We cloned and characterized a full-length cDNA representing a product of the latter type of synthesis. mRNAs and antigenomes appeared sequentially and in parallel with leaderless and leader-containing RNAs. These various RNA species accumulated concurrently throughout infection. However, cycloheximide preferentially inhibited accumulation of antigenomes and leader-containing RNA but not leaderless and subgenomic RNAs late in infection, suggesting that synthesis of the former RNA species requires a late protein function or a continuous supply of structural proteins or both. These results reveal a previously undescribed mechanism for RNA synthesis in measles virus.  相似文献   

11.
Northern blot analysis of double-stranded (ds) RNA from bean-leaf tissue infected with tobacco necrosis virus strain D (TNV-D) detected the 4 kb genomic RNA and two subgenomic RNAs of about 1.5 kb and 1.2 kb; RNA extracted from virus particles only contained the genomic species. Blotting and probing with a range of probes indicated the approximate locations of the 5'ends of subgenomic RNA so that primers to fine-map the ends could be designed. When both singlestranded and ds RNA, extracted from TNV-D infected and healthy bean leaves were used as templates for primer extension using primers complementary to sequences at, or upstream of, the initiation codons of, respectively, the coat protein and the p7a genes, major infectionspecific products were detected. Both subgenomic RNAs start at G residues. The larger subgenomic RNA is 1547 nucleotides in length with a leader sequences of 36 nucleotides upstream of the p7a gene, and the smaller subgenomic RNA has a 90 nucleotide leader upstream of the coat protein AUG and is 1202 nucteotides long. An analysis of the 5'terminal locations of both subgenomic RNAs and the previously mapped analogous subgenomic RNAs associated with infection with the related TNV-A isolate, revealed a marked degree of homology downstream of the initiation sites for each RNA. This homology was maintained at the 5'termini of both virion RNAs and could be extended to another isolate of TNV for which partial sequence data, but not subgenomic mapping RNA data are available.  相似文献   

12.
The intracellular defective RNAs generated during high-multiplicity serial passages of mouse hepatitis virus JHM strain on DBT cells were examined. Seven novel species of single-stranded polyadenylic acid-containing defective RNAs were identified from passages 3 through 22. The largest of these RNAs, DIssA (molecular weight [mw], 5.2 X 10(6)), is identical to the genomic RNA packaged in the defective interfering particles produced from these cells. Other RNA species, DIssB1 (mw, 1.9 X 10(6) to 1.6 X 10(6)), DIssB2 (mw, 1.6 X 10(6)), DIssC (mw, 2.8 X 10(6)) DIssD (mw, 0.82 X 10(6)), DIssE (mw, 0.78 X 10(6)), and DIssF (mw, 1.3 X 10(6)) were detected at different passage levels. RNase T1-resistant oligonucleotide fingerprinting demonstrated that all these RNAs were related and had multiple deletions of the genomic sequences. They contained different subsets of the genomic sequences from those of the standard intracellular mRNAs of nondefective mouse hepatitis virus JHM strain. Thus these novel intracellular viral RNAs were identified as defective interfering RNAs of mouse hepatitis virus JHM strain. The synthesis of six of the seven normal mRNA species specific to mouse hepatitis virus JHM strain was completely inhibited when cells were infected with viruses of late-passage levels. However, the synthesis of RNA7 and its product, viral nucleoprotein, was not significantly altered in late passages. The possible mechanism for the generation of defective interfering RNAs was discussed.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号