首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allergic asthma is characterized by persistent airway inflammation and remodeling. Bronchoalveolar lavage conducted with fiberoptic bronchoscopy has been widely used for investigating the pathogenesis of asthma and other lung disorders. Identification of proteins in the bronchoalveolar lavage fluid (BALF) and their expression changes at different stages of asthma could provide further insights into the complex molecular mechanisms involved in this disease. In this report, we describe the first comprehensive differential proteomic analysis of BALF from both asthmatic patients and healthy subjects before and 24 h after segmental allergen challenge. Our proteomic analysis involves affinity depletion of six abundant BALF proteins, SDS-PAGE fractionation, protein in-gel digestion, and subsequent nano-LC-MS/MS analysis in conjunction with database searching for protein identification and semiquantitation. More than 1,500 distinct proteins were identified of which about 10% displayed significant up-regulation specific to the asthmatic patients after segmental allergen challenge. The differentially expressed proteins represent a wide spectrum of functional classes such as chemokines, cytokines, proteases, complement factors, acute phase proteins, monocyte-specific granule proteins, and local matrix proteins, etc. The majority of these protein expression changes are closely associated with many aspects of the pathophysiology of asthma, including inflammation, eosinophilia, airway remodeling, tissue damage and repair, mucus production, and plasma infiltration. Importantly a large portion of these proteins and their expression changes were identified for the first time from BALF, thus providing new insights for finding novel pathological mediators and biomarkers of asthma.  相似文献   

2.
Newly emerged proteomic methodologies, particularly data‐independent acquisition (DIA) analysis–related approaches, would improve current gene expression–based classifications of colorectal cancer (CRC). Therefore, this study was aimed to identify protein expression signatures using SWATH‐MS DIA and targeted data extraction, to aid in the classification of molecular subtypes of CRC and advance in the diagnosis and development of new drugs. For this purpose, 40 human CRC samples and 7 samples of healthy tissue were subjected to proteomic and bioinformatic analysis. The proteomic analysis identified three different molecular CRC subtypes: P1, P2 and P3. Significantly, P3 subtype showed high agreement with the mesenchymal/stem‐like subtype defined by gene expression signatures and characterized by poor prognosis and survival. The P3 subtype was characterized by decreased expression of ribosomal proteins, the spliceosome, and histone deacetylase 2, as well as increased expression of osteopontin, SERPINA 1 and SERPINA 3, and proteins involved in wound healing, acute inflammation and complement pathway. This was also confirmed by immunodetection and gene expression analyses. Our results show that these tumours are characterized by altered expression of proteins involved in biological processes associated with immune evasion and metastasis, suggesting new therapeutic options in the treatment of this aggressive type of CRC.  相似文献   

3.
Aging is a phenomenon that is associated with profound medical implications. Idiopathic epiretinal membrane (iEMR) and macular hole (MH) are the major vision‐threatening vitreoretinal diseases affecting millions of aging people globally, making these conditions an important public health issue. iERM is characterized by fibrous tissue developing on the surface of the macula, which leads to biomechanical and biochemical macular damage. MH is a small breakage in the macula and is associated with many ocular conditions. Although several individual factors and pathways are suggested, a systems pathology level understanding of the molecular mechanisms underlying these disorders is lacking. Therefore, we performed mass spectrometry‐based label‐free quantitative proteomics analysis of the vitreous proteomes from patients with iERM and MH to identify the key proteins, as well as the multiple interconnected biochemical pathways, contributing to the development of these diseases. We identified a total of 1,014 unique proteins, many of which are linked to inflammation and the complement cascade, revealing the inflammation processes in retinal diseases. Additionally, we detected a profound difference in the proteomes of iEMR and MH compared to those of diabetic retinopathy with macular edema and rhegmatogenous retinal detachment. A large number of neuronal proteins were present at higher levels in the iERM and MH vitreous, including neuronal adhesion molecules, nervous system development proteins, and signaling molecules, pointing toward the important role of neurodegenerative component in the pathogenesis of age‐related vitreoretinal diseases. Despite them having marked similarities, several unique vitreous proteins were identified in both iERM and MH, from which candidate targets for new diagnostic and therapeutic approaches can be provided.  相似文献   

4.
A Koj 《Blut》1985,51(4):267-274
The acute phase response to injury includes metabolic alterations, such as fever, leucocytosis, enhanced uptake of some metals and amino acids by liver, and changes in the synthesis of certain plasma proteins. Many of these effects can be elicited either in vivo or in tissue culture by monocyte- and keratinocyte-derived cytokine interleukin 1 (IL-1), which had earlier been variably termed leucocytic endogenous mediator, lymphocyte activating factor, or endogenous pyrogen. Although recombinant murine IL-1 was shown to induce hepatic synthesis of acute phase proteins other authors demonstrated that hepatocyte stimulating factor (HSF) is distinct from IL-1. Possible relationships between HSF und IL-1 and the molecular mechanisms of action of these cytokines on the synthesis of acute phase proteins are briefly discussed.  相似文献   

5.
Long pentraxin 3 (PTX3) is a newly discovered acute phase protein produced at the sites of infection and inflammation by tissue cells, macrophages, monocytes, and dendritic cells. PTX3 plays an important role in preventing infection of certain fungi, bacteria, and viruses in the lung. Recombinant PTX3 has been proposed as a potential antifungal molecule for therapy. However, under certain experimental conditions, such as intestinal ischemia-reperfusion, high volume mechanical ventilation, or severe bacterial infection, increased expression of PTX3 is associated with more severe lung injury. Therefore, it is necessary to further explore the sources of PTX3 in the lung and the regulatory mechanisms of its expression. It is also essential to further determine how PTX3 binds to pathogens, complement, and apoptotic cells, and to determine whether PTX3 has a specific receptor in targeted cells. These studies will provide insight into the pathological processes of pulmonary infection and acute lung injury and provide potential novel therapeutic strategies to control pulmonary infections without severe lung injury.  相似文献   

6.
Adult mouse hepatocytes respond in vivo to experimentally induced acute inflammation by an increased synthesis and secretion of alpha 1-acid glycoprotein, haptoglobin, hemopexin, and serum amyloid A. Concurrently, the production of albumin and apolipoprotein A-1 is reduced. To define possible mediators of this response and to study their action in tissue culture, we established primary cultures of hepatocytes. Various hormones and factors that have been proposed to regulate the hepatic acute phase reaction were tested for their ability to modulate the expression of plasma proteins in these cells. Acute phase plasma and conditioned medium from activated monocytes influenced the production of most acute phase plasma proteins, and the regulation appears to occur at the level of functional mRNA. Purified hormones produced a significant anabolic response in only a few cases: dexamethasone was found to be effective in maintaining differentiated expression of the cells; and glucagon produced a specific inhibition of haptoglobin synthesis. When cells were treated with a combination of conditioned monocyte medium and dexamethasone, secretion of proteins was markedly reduced. The carbohydrate moieties of all plasma glycoproteins were incompletely modified, apparently as a result of decreased intracellular transport of newly synthesized plasma proteins. Although primary hepatocytes were not phenotypically stable in tissue culture, the cells nevertheless retained a broad response spectrum to exogenous signals. We propose this as a useful system to study the production of plasma proteins and thereby pinpoint the nature and activity of effectors mediating the hepatic acute phase reaction.  相似文献   

7.
The synthesis of complement components in human fibroblasts is modulated by mediators of inflammation such as cytokines. In particular, interleukin-1 (IL-1) and tumor necrosis factor (TNF) induce time- and dose-dependent increases in the synthesis of complement proteins factor B (FB), C3, and factor H (FH). Polypeptide growth factors are also soluble mediators released during inflammation and able to modulate many fibroblast functions. We have studied the effects of polypeptide growth factors platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) on the synthesis of complement proteins in cultured human fibroblasts. PDGF, EGF, and FGF alone did not affect the level of synthesis of any of the complement proteins analyzed, but simultaneous incubation of PDGF, EGF, or FGF with IL-1 and TNF resulted in a dose-dependent inhibition of the cytokine-enhanced expression of FB. Inhibition of FB synthesis was observed between 4 and 8 h of exposure to PDGF and persisted for 4 h after the removal of the growth factor. Analysis of steady-state levels of specific FB mRNA suggested that PDGF-induced inhibition of FB synthesis is mediated at a pretranslational level and that it requires new protein synthesis. The effect of the growth factors was limited to FB, with marginal or no inhibition on the cytokine-enhanced synthesis of C3 and FH, excluding the possibility that the inhibitory effects of PDGF, EGF, and FGF on FB synthesis were due to a negative modulation of the growth factors on cytokine cell membrane receptors. Specific inhibition of cytokine-induced increases in FB synthesis by the growth factors may represent down regulation of the acute inflammatory process, further permitting progression to processes of tissue repair and remodeling. Study of the interactions between cytokines and growth factors in the regulation of synthesis of complement proteins may also provide a system for investigating mechanisms of signal transduction of both polypeptide growth factors and cytokines.  相似文献   

8.
Lipopolysaccharide (LPS) is a major microbial mediator for tissue injury and sepsis resulting from Gram‐negative bacterial infection. LPS is an external factor that induces robust expression of serum amyloid A (SAA), a major constituent of the acute‐phase proteins, but the relationship between SAA expression and LPS‐induced tissue injury remains unclear. Here, we report that mice with inducible transgenic expression of human SAA1 are partially protected against inflammatory response and lung injury caused by LPS and cecal ligation and puncture (CLP). In comparison, transgenic SAA1 does not attenuate TNFα‐induced lung inflammation and injury. The SAA1 expression level correlates inversely with the endotoxin concentrations in serum and lung tissues since SAA1 binds directly to LPS to form a complex that promotes LPS uptake by macrophages. Disruption of the SAA1‐LPS interaction with a SAA1‐derived peptide partially reduces the protective effect and exacerbates inflammation. These findings demonstrate that acute‐phase SAA provides innate feedback protection against LPS‐induced inflammation and tissue injury.  相似文献   

9.
蛋白质组学在干细胞研究中的应用   总被引:1,自引:0,他引:1  
蛋白质组学技术通过整合多项技术来分析生物体的全部蛋白质成分,通过考察不同状态下细胞或组织蛋白质组的变化情况来了解细胞活动的分子机理。干细胞分化过程中受外界条件的影响其蛋白表达模式也表现出一定的差异,对干细胞分化过程中进行蛋白质组学研究将有利于从蛋白质分子水平上阐明干细胞的分化机理。本文对蛋白质组学及其在干细胞研究中的应用加以评述。  相似文献   

10.
11.
The complement system plays an important role in a host's defence mechanisms, such as in immune bacteriolysis, neutralization of viruses, immune adherence, immunoconglutination and in enhancement of phagocytosis. The possible role of this important biological system in biological fluids on the mucosal surfaces, including breast milk, has however been largely neglected. Its contribution to the 'common' mucosal immunity is still enigmatic and largely speculative. Assessment of the complement system in human breast milk, which has so far largely been limited to different assays of the individual component proteins, is reviewed. A brief review of the classical and the alternative pathways of complement activation is presented. The potential physiological roles of various complement components and their activation fragments in human milk in particular, and other mucosal surfaces in general, are also presented. It was concluded that the complement system might play a complementary role to other immunological and non-immunological protective mechanisms on the mucosal surfaces.  相似文献   

12.
13.
Complementary DNA clones corresponding to most of the proteins of a major amplification and effector of immune host defenses, the complement system, have been isolated and characterized. Availability of these molecular probes has substantially increased our information about and understanding of the structure of the complement proteins and regulation of complement gene expression. Information about the proteins has led to the generation of potential pharmacological agents for the selective control of inflammation. Understanding of the regulatory mechanism has provided insights into the mechanisms accounting for the response to several cytokines including interferon-gamma, interleukin-1 and tumor necrosis factor. Finally, complement molecular genetics has been stimulated so that the basis for several complement deficiency disorders has been elucidated.  相似文献   

14.
The characterisation of fish blood proteomes is important for comparative studies of seminal and blood proteins as well as for the analysis of fish immune mechanisms and pathways. In this study, LC‐MS/MS and 2D‐DIGE were applied to compare rainbow trout seminal (SP) and blood plasma (BP) proteomes. The 54 differentially abundant proteins identified in SP are involved in a variety of signalling pathways, including protein ubiquitination, liver X receptor/retinoid X receptor (LXR/RXR) and farnesoid X receptor activation, cell cycle and acute phase signalling. These findings may indicate the prevalence of acute phase signalling pathways in trout SP, and its essential role in protecting spermatozoa and reproductive tissues. Our study provides the first in‐depth analysis of the trout BP proteome, with a total of 119 proteins identified. The major proteins of rainbow trout BP were recognised as acute phase proteins. Analysis of BP proteins indicated that acute phase response signalling, the complement system, liver X receptor/retinoid X receptor and farnesoid X receptor activation and the coagulation system are the top canonical pathways. This study enhances knowledge of the blood origin of trout SP proteins and understanding of fish reproductive biology. Our results provide new insight into blood proteins specifically important for fish physiology and innate immunity. The mass spectrometry data are available via ProteomeXchange with the identifier PXD005988 and https://doi.org/10.6019/PXD005988 .  相似文献   

15.
Lipid peroxidation occurs in the context of many physiological processes but is greatly increased in various pathological situations. A consequence of phospholipid peroxidation is the generation of oxidation-specific epitopes, such as phosphocholine of oxidized phospholipids and malondialdehyde, which form neo-self determinants on dying cells and oxidized low-density lipoproteins. In this review we discuss evidence demonstrating that pattern recognition receptors of the innate immune system recognize oxidation-specific epitopes as endogenous damage-associated molecular patterns, allowing the host to identify dangerous biological waste. Oxidation-specific epitopes are important targets of both cellular and soluble pattern recognition receptors, including toll-like and scavenger receptors, C-reactive protein, complement factor H, and innate natural IgM antibodies. This recognition allows the innate immune system to mediate important physiological house keeping functions, for example by promoting the removal of dying cells and oxidized molecules. Once this system is malfunctional or overwhelmed the development of diseases, such as atherosclerosis and age-related macular degeneration is favored. Understanding the molecular components and mechanisms involved in this process, will help the identification of individuals with increased risk of developing chronic inflammation, and indicate novel points for therapeutic intervention. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.  相似文献   

16.
The molecular mechanisms of acute lung injury are incompletely understood. MicroRNAs (miRNAs) are crucial biological regulators that act by suppressing their target genes and are involved in a variety of pathophysiologic processes. miR-127 appears to be downregulated during lung injury. We set out to investigate the role of miR-127 in lung injury and inflammation. Expression of miR-127 significantly reduced cytokine release by macrophages. Looking into the mechanisms of regulation of inflammation by miR-127, we found that IgG FcγRI (CD64) was a target of miR-127, as evidenced by reduced CD64 protein expression in macrophages overexpressing miR-127. Furthermore, miR-127 significantly reduced the luciferase activity with a reporter construct containing the native 3' untranslated region of CD64. Importantly, we demonstrated that miR-127 attenuated lung inflammation in an IgG immune complex model in vivo. Collectively, these data show that miR-127 targets macrophage CD64 expression and promotes the reduction of lung inflammation. Understanding how miRNAs regulate lung inflammation may represent an attractive way to control inflammation induced by infectious or noninfectious lung injury.  相似文献   

17.
A subset of the lipocalins, notably alpha(1)-acid glycoprotein, alpha(1)-microglobulin, and glycodelin, exert significant immunomodulatory effects in vitro. Interestingly, all three are encoded from the q32-34 region of human chromosome 9, together with at least four other lipocalins (neutrophil gelatinase-associated lipocalin, complement factor gamma-subunit, tear prealbumin, and prostaglandin D synthase) that also may have anti-inflammatory and/or antimicrobial activity. This review addresses important features of this genetically linked subfamily of lipocalins (involvement with the acute phase response, immunomodulatory and anti-inflammatory properties, the tissue localization, complex formation with other proteins and receptors, etc.). It is likely that these proteins have evolved to be an integrated part of the body's defense system as part of the extended cytokine network. Its members exert a regulatory, dampening influence on the inflammatory cascade, thereby protecting against tissue damage from excessive inflammation. That most major mammalian allergens are lipocalins may reflect this connection of lipocalins with the immune system. We propose that this immunologically active lipocalin subset be named the 'immunocalins', signifying not only the structural homology and close genetic linkage of its members, but also their protective involvement with immunological and inflammatory processes. As immune mediators, immunocalins appear to use at least three interactive sites: the lipocalin 'pocket', binding sites for other plasma proteins, and binding sites for cell surface receptors.  相似文献   

18.
Regulation of chemokine expression by IL-10 in lung inflammation   总被引:18,自引:0,他引:18  
Shanley TP  Vasi N  Denenberg A 《Cytokine》2000,12(7):1054-1064
We have been interested in understanding the mechanisms regulating the inflammatory process underlying acute lung injury. The current studies have employed a model of acute lung inflammation in mice triggered by bacterial lipopolysaccharide. The development of this injury was associated with increased expression of the chemokines, MIP-1alpha and MIP-2, that coordinate recruitment of neutrophils to the lung. IL-10 is a potent, endogenous anti-inflammatory molecule that has been shown to decrease lung inflammation partly on the basis of TNF-alpha and IL-1beta inhibition. In these studies we tested the hypothesis that endogenous IL-10 modulates chemokine expression using the IL-10 knock-out mouse, and then explored the molecular mechanisms by which IL-10 might do so. The results demonstrate that significant elevations in both chemokines were observed in the absence of IL-10 and that these findings were associated with significant increases in lung neutrophil accumulation. In vitro studies defined two, gene-specific, mechanisms by which IL-10 regulated chemokine expression: mRNA destabilization and NF-kappaB inhibition. These results suggested that IL-10 is an important, endogenous regulator of chemokine expression in acute lung inflammation.  相似文献   

19.

Background

It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy.

Methodology/Principal Findings

Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation.

Conclusions

Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.  相似文献   

20.
Wound healing is a finely controlled biological process involving a series of complex cellular interactions. Following inflammation, the wound bed matrix is gradually replaced by granulation tissue followed by the long slow process where collagen accumulates and restores tensile strength. The studies revealed that human granulation tissue varied in many aspects in comparison with normal skin. In granulation tissue the molecular organization of collagen showed an increased amount of type III collagen resembling embryonic tissue. The presence of type V collagen with three distinct chains was the characteristic feature of granulation tissue. The physicochemical properties of collagen extracted from granulation tissue showed the influence of proteoglycans during collagen aggregation and these proteoglycans from the major non-collagenous proteins during the proliferative phase of healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号