首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Polymer-bound N-tritylhydrazines 4 were easily prepared by reacting polymeric tritylchlorides 3 with hydrazine. Subsequently, compounds 4 have been successfully applied to the solid phase synthesis of partially protected peptide hydrazides using 1-hydroxybenzotriazolyl esters of Fmoc- or Trt-amino acids. The synthesized peptide hydrazides can be quantitatively split off from the resins by mild acidic treatment, while the benzyl- and tert-butyl protecting groups remain unaffected.  相似文献   

2.
The synthesis of peptide bonds catalysed by subtilisin Carlsberg was studied in different hydrophilic organic solvents with variable H2O concentration. Z-Val-Trp-OMe and Z-Ala-Phe-OMe were used as acyl donors, and a series of amino acid derivatives, di- and tripeptides of the general structure Xaa-Gly, Gly-Xaa, Gly-Gly-Xaa (Xaa represents all natural L-amino acids except cysteine) and other peptides were used as nucleophiles. A comparative study of the enzymatic synthesis in aqueous DMF (50%, v/v) and acetonitrile containing 10% (v/v) of H2O demonstrated that the yields of peptide products were higher in most cases when acetonitrile with low H2O concentration was used. The acylation of weak nucleophiles was improved in organic solvents with very low H2O concentration (2%). The reactions in anhydrous Bu(t)-OH proceeded with substantially lower velocity. Generally, the restricted nucleophile specificity of the enzyme for glycine and hydrophilic amino acid residues in P1' position, as well as numerous side reactions, limit the utilization of subtilisin in peptide synthesis, especially in the case of the segment condensations. Contrary to the published data, we have proved that proline derivatives were not acylated in any media with the help of subtilisin Carlsberg. Effective ester hydrolysis of a protected nonapeptide corresponding to the N-terminal sequence of dicarba-eel-calcitonin catalysed by subtilisin was achieved.  相似文献   

3.
4.
5.
6.
Di- and tripeptide nitriles, glycylaminoacetonitrile (Gly-AAN), diglycylaminoacetonitrile (Gly-Gly-AAN), alanyl--aminopropionitrile (Ala-APN), and dialanyl--aminopropionitrile (Ala-Ala-APN) were synthesized first.These peptide nitriles and related peptides and peptide amides were analyzed by means of ion-exchange chromatography. The every two diastereomers of dialanine, dialanine amide, and Ala-APN were separated into two peaks by using a pH 3.25 buffer as an eluent. The four isomers of trialanine, trialanine amide, and Ala-Ala-APN gave four, two, and one peak, respectively under the same conditions.The trimethylsilyl derivatives of alanyl peptides and related compounds were analyzed by means of gas chromatography combined with mass-spectrometry. The parent (M+ and/or M+-15) and other mass numbers observed in their mass-spectra supported the introduction of various numbers of trimethylsilyl groups.  相似文献   

7.
A new and cost-effective linker for the generation of carboxylic acid end groups on Multipin supports (SynPhase crowns) has been developed. Synthesis of the linker was based on modification of grafted polystyrene (PS) crowns to generate a hydroxyethyl moiety which is acid labile in 10-20% trifluoroacetic acid (TFA) in dichloromethane (DCM). Solid-phase syntheses of model decapeptides using this linker are described.  相似文献   

8.
M A Marahiel 《FEBS letters》1992,307(1):40-43
Biosynthesis of peptides in non-ribosomal systems is catalyzed by multifunctional enzymes that employ the thio-template mechanism. Recent studies on the analysis of the primary structure of several peptide synthetases have revealed that they are organized in highly conserved and repeated functional domains. The aligned domains provide the template for peptide synthesis, and their order determines the sequence of the peptide product.  相似文献   

9.
Acylpeptide hydrolase is shown to catalyse the specific addition of a single amino acid to the N-terminus of a peptide. The stabilised Sepharose-coupled form of the enzyme is used to couple a carboxy-methylated N-formyl (or N-acetyl) amino acid to a short pre-existing peptide. The yield is improved by optimal timing of the reaction and the presence of moderate concentrations (5%) of N,N-dimethylformamide. Two tripeptides, Ac-Ala-Ala-Ala and fMet-Leu-Phe (f, formyl) were synthesized by this technique (in yields of 2% and 0.064% respectively). The products were characterised by HPLC, amino acid analysis, mass spectroscopy and protein sequencing. The synthetic fMet-Leu-Phe also had biological activity, in that it stimulated superoxide generation by granulocytes. Acylpeptide hydrolase could therefore be a very useful tool for the synthesis and modification of peptides.  相似文献   

10.
11.
Carboxypeptidase C partially purified from the flavedo of citrus fruit by a new, simple procedure was studied as a catalyst for peptide-bond formation. Dipeptides were obtained in high yields (80-95%) with Bz--Tyr--OEt as carboxyl-compound, and amino acid amides and amino acid alkylesters as nucleophiles. To characterize the synthesis reaction, a number of parameters such as pH, excess of the nucleophile, and the molarity of the buffer were evaluated. The yield of dipeptides depends on the side chain of the amino acid alkylester used as the carboxyl component as well as on the N-terminal protecting group. Esterase activity was minimal in the absence of a nucleophile, suggesting a modified mechanism for the synthesis reaction compared to other serine proteases. No secondary hydrolysis of the peptides formed was observed.  相似文献   

12.
The synthesis reaction of the peptide, N-Cbz-L-tryptophanyl-glycineamide, catalyzed by alpha-chymotrypsin was performed in a 20% water/80%, 1,4-butanediol mixture. The synthesis yield reached 90.9% at the end of the reaction and 72.3% after purification. The effects on the yield of both pH and the ratio between total initial concentrations of glycineamide and N-Cbz-L-tryptophan are examined. The high yield, specificity, simplicity and reproducibility of this method make it complementary of the chemical methods.  相似文献   

13.
We describe the noninvasive real-time pressure monitoring of Boc- and Fmoc-based peptide synthesis. Pressure was measured using a resistance strain gauge attached to the inlet of a continuous-flow reactor of variable volume. In the assembly of the 'difficult' polyalanine sequence, it was shown that pressure monitoring can reveal structural variations of the peptide-resin, e.g. the onset, development and termination of aggregation. This method provided washing minimization that favored substantial saving of solvents. The obtained results demonstrated the advantage of pressure monitoring over swellographic monitoring.  相似文献   

14.
Nonribosomal peptide synthesis and toxigenicity of cyanobacteria.   总被引:23,自引:0,他引:23       下载免费PDF全文
Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, and C. Khosla, Science 262:1546-1557, 1993; T. Stachelhaus, A. Schneider, and M. A. Marahiel, Science 269:69-72, 1995). Most nonribosomal peptides from microorganisms are classified as secondary metabolites; that is, they rarely have a role in primary metabolism, growth, or reproduction but have evolved to somehow benefit the producing organisms. Cyanobacteria produce a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins. This paper addresses the molecular genetic basis of nonribosomal peptide synthesis in diverse species of cyanobacteria. Amplification of peptide synthetase genes was achieved by use of degenerate primers directed to conserved functional motifs of these modular enzyme complexes. Specific detection of the gene cluster encoding the biosynthetic pathway of the cyanobacterial toxin microcystin was shown for both cultured and uncultured samples. Blot hybridizations, DNA amplifications, sequencing, and evolutionary analysis revealed a broad distribution of peptide synthetase gene orthologues in cyanobacteria. The results demonstrate a molecular approach to assessing preexpression microbial functional diversity in uncultured cyanobacteria. The nonribosomal peptide biosynthetic pathways detected may lead to the discovery and engineering of novel antibiotics, immunosuppressants, or antiviral agents.  相似文献   

15.
Expressed protein ligation (EPL) is a protein semisynthesis technique that allows the site-specific introduction of unnatural amino acids and biophysical probes into proteins. In the present study, we illustrate the utility of the approach through the generation of two semisynthetic proteins bearing spectroscopic probes. Dihydrofolate reductase containing a single (13)C probe in an active site loop was generated through the ligation of a synthetic peptide-alpha-thioester to a recombinantly generated fragment containing an N-terminal Cys. Similarly, c-Crk-II was assembled by the sequential ligation of three recombinant polypeptide building blocks, allowing the incorporation of (15)N isotopes in the central domain of the protein. These examples showcase the scope of the protein ligation strategy for selective introduction of isotopic labels into proteins, and the protocols described will be of value to those interested in using EPL on other systems.  相似文献   

16.
Pepsin successfully catalyzed the synthesis of several peptide derivatives from N-protected di- or tripeptides and amino acid or peptide esters or p-nitroanilides in dimethylformamide-water solutions at pH 4.6. An optimal substrates:pepsin ratio depended on the structure of starting peptides, especially their fit to the substrate binding sites of the enzyme. For hexapeptide Z-Ala-Ala-Phe-Leu-Ala-Ala-OCH3 formation, an equilibrium yield was attained at 1:3.10(5) enzyme-substrates ratio that indicated high efficiency of pepsin in synthesis reactions. In the course of the equilibrium peptide synthesis, pepsin gradually disappeared from the liquid phase due to its entrapment within a gel, formed by the hexapeptide product, while retaining its activity. The inclusion into the precipitate was not specific for pepsin, so far as inert proteins, lysozyme, ribonuclease A and carbonic anhydrase, when added to the reaction mixture, became also co-precipitated with the hexapeptide formed. It appears that co-precipitation of pepsin, an important factor limiting the enzyme efficiency, might be operative as well for other proteinases used to catalyze peptide synthesis.  相似文献   

17.
The use of pepsin as a catalyst for the synthesis of peptide bonds was investigated. It is shown that the enzyme enables the preparation of several protected dipeptides and tripeptides containing two adjacent aromatic residues of the type P-Al-Phe-Y, P-PHe-Ar-Y, or P-AR-Phe-Y where P and Y are amino and carboxyl protecting groups, AL is an aliphatic amino acid residue, and Ar is an aromatic, amino acid residue. They yields are in the rang 25–97%. The high yields, combined with the enzyme's stereospecificity, permit the isolation of optically pure enantiomers from racemic mixtures. For example, when Z-DL -Ph-OH is allowed to react with an excess of H-L -Phe-NH2, the stereoisomer Z-L -Phe-L -Phe-NH2 is obtained in practically quantitative yield. At the same time, the unreacted, optically pure Z-D -Phe-OH can be recovered (Z = carbobenzyloxy, Phe = phenylalanine). The advantages and disadvantages of the enzymatic coupling procedure as a possible routine method for peptide synthesis are discussed.  相似文献   

18.
The synthesis of large numbers of peptides can be very labor intensive and, if a conventional peptide synthesizer is used, only small numbers of peptides can be produced within a reasonable time. The techniques described below can make large numbers of different peptides simultaneously with varying degrees of mechanization, ranging from the wholly manual methods, to those involving complete mechanization of the whole synthesis process. Most of the multiple synthesis methods are primarily intended for small scale production ranging from microgram amounts up to a few tens of milligrams. All of the systems are economical in use of solvents and reagents, enabling cost-effective synthesis. The techniques described can also be used to prepare peptide libraries, containing several millions of peptide sequences, to enable the rapid screening of all possible permutations of amino acids within short peptides. However, it is considered that multiple synthesis methods are not particularly suited where extreme high purity or very long peptides are required.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号