首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Deane EE  Kelly SP  Woo NY 《Life sciences》2000,66(15):1435-1444
The effect of cortisol treatment on branchial Na(+)-K(+)-ATPase subunit mRNA abundance, enzyme activity, chloride cell number/morphometrics and serum electrolyte levels were investigated for the marine teleost Sparus sarba. Groups of fish received intraperitoneal injections of cortisol at a concentration of 4 micrograms/g body weight, daily, over a seven-day period. This dose of cortisol was sufficiently high enough to maintain a condition of hypercortisolemia as serum cortisol levels in treated fish were eleven fold higher than controls at time of sacrifice. By using branchial Na(+)-K(+)-ATPase alpha- and beta-subunit cDNA clones we were able to demonstrate that cortisol administration to S. sarba caused a significant elevation in the abundance of alpha-mRNA whereas the levels of beta-mRNA were unchanged. In addition Na(+)-K(+)-ATPase activity remained unaltered by cortisol administration. Branchial chloride cell number, exposure, apical area as well as serum Na+ and Cl- levels remained unchanged after cortisol administration. The results of this study suggest that elevated cortisol level may not necessarily translate into modulated branchial Na(+)-K(+)-ATPase activity and chloride cell function in hypo-osmoregulating marine fish.  相似文献   

2.
3.
4.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

12.
13.
14.
This study investigated the effects of electrical stimulation on Na+-K+-ATPase isoform mRNA, with the aim to identify factors modulating Na+-K+-ATPase mRNA in isolated rat extensor digitorum longus (EDL) muscle. Interventions designed to mimic exercise-induced increases in intracellular Na+ and Ca2+ contents and membrane depolarization were examined. Muscles were mounted on force transducers and stimulated with 60-Hz 10-s pulse trains producing tetanic contractions three times at 10-min intervals. Ouabain (1.0 mM, 120 min), veratridine (0.1 mM, 30 min), and monensin (0.1 mM, 30 min) were used to increase intracellular Na+ content. High extracellular K+ (13 mM, 60 min) and the Ca2+ ionophore A-23187 (0.02 mM, 30 min) were used to induce membrane depolarization and elevated intracellular Ca2+ content, respectively. Muscles were analyzed for Na+-K+-ATPase alpha1-alpha3 and beta1-beta3 mRNA (real-time RT-PCR). Electrical stimulation had no immediate effect on Na+-K+-ATPase mRNA; however at 3 h after stimulation, it increased alpha1, alpha2, and alpha3 mRNA by 223, 621, and 892%, respectively (P = 0.010), without changing beta mRNA. Ouabain, veratridine, and monensin increased intracellular Na+ content by 769, 724, and 598%, respectively (P = 0.001) but did not increase mRNA of any isoform. High intracellular K+ concentration elevated alpha1 mRNA by 160% (P = 0.021), whereas A-23187 elevated alpha3 mRNA by 123% (P = 0.035) but reduced beta1 mRNA by 76% (P = 0.001). In conclusion, electrical stimulation induced subunit-specific increases in Na+-K+-ATPase mRNA in isolated rat EDL muscle. Furthermore, Na+-K+-ATPase mRNA appears to be regulated by different stimuli, including cellular changes associated with membrane depolarization and increased intracellular Ca2+ content but not increased intracellular Na+ content.  相似文献   

15.
Ouabain, aspecific inhibitor ofNa+-K+-ATPase,was coupled to epoxy agarose via a 13-atom spacer to make an affinitycolumn that specifically bindsNa+-K+-ATPase.Na+-K+-ATPasefrom rat and dog kidney was bound to the column and was eluted as afunction of enzyme conformation, altered by adding specificcombinations of ligands.Na+-K+-ATPasefrom both sources bound to the column in the presence of Na + ATP + Mgand in solutions containing 30 mM K. No binding was observed in thepresence of Na or Na + ATP. These experiments suggest thatNa+-K+-ATPasebinds to the column under the same conditions that it binds tountethered ouabain.Na+-K+-ATPasealready bound to the column was competitively eluted with excess freeNa + ouabain or with Na + ATP. The latter eluted active enzyme. Forcomparable amounts of boundNa+-K+-ATPase,Na + ouabain and Na + ATP eluted more rat than dogNa+-K+-ATPase,consistent with the lower affinity of the ratNa+-K+-ATPasefor ouabain. The ouabain-affinity column was used to purify activeNa+-K+-ATPasefrom rat kidney microsomes and rat adrenal glomerulosa cells. Thespecific activity of the kidney enzyme was increased from ~2 to 15 µmolPi · mg1 · min1.Na+-K+-ATPasepurified from glomerulosa cells that were prelabeled with [32P]orthophosphatewas phosphorylated on the -subunit, suggesting that these cellscontain a kinase that phosphorylatesNa+-K+-ATPase.

  相似文献   

16.
17.
The aim of this study was to determine whether changes in protein content and/or gene expression of Na+-K+-ATPase subunits underlie its decreased enzyme activity during ischemia and reperfusion. We measured protein and mRNA subunit levels in isolated rat hearts subjected to 30 min of ischemia and 30 min of reperfusion (I/R). The effect of ischemic preconditioning (IP), induced by three cycles of ischemia and reperfusion (10 min each), was also assessed on the molecular changes in Na+-K+-ATPase subunit composition due to I/R. I/R reduced the protein levels of the alpha2-, alpha3-, beta1-, and beta2-isoforms by 71%, 85%, 27%, and 65%, respectively, whereas the alpha1-isoform was decreased by <15%. A similar reduction in mRNA levels also occurred for the isoforms of Na+-K+-ATPase. IP attenuated the reduction in protein levels of Na+-K+-ATPase alpha2-, alpha3-, and beta2-isoforms induced by I/R, without affecting the alpha1- and beta1-isoforms. Furthermore, IP prevented the reduction in mRNA levels of Na+-K+-ATPase alpha2-, alpha3-, and beta1-isoforms following I/R. Similar alterations in protein contents and mRNA levels for the Na+/Ca2+ exchanger were seen due to I/R as well as IP. These findings indicate that remodeling of Na+-K+-ATPase may occur because of I/R injury, and this may partly explain the reduction in enzyme activity in ischemic heart disease. Furthermore, IP may produce beneficial effects by attenuating the remodeling of Na+-K+-ATPase and changes in Na+/Ca2+ exchanger in hearts after I/R.  相似文献   

18.
19.
20.
The present study tests the hypothesis that endurance exercise training (ETr) reverses age-associated alterations in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Expression of the isoforms was examined in 16-mo-old sedentary middle-aged, 29-mo-old sedentary senescent, and 29-mo-old treadmill exercise-trained senescent Fischer 344 x Brown Norway rats. Levels of the alpha1-isoform increased with age in red gastrocnemius (GR), white gastrocnemius (GW), and extensor digitorum longus (EDL) muscles, and ETr further increased its levels. Levels of the alpha2-isoform were unchanged in GR, had a strong trend for a decrease in GW, and decreased significantly in EDL. ETr increased expression of the alpha2-isoform in all three muscle groups. There was no increase in expression of the beta1-isoform in GR, GW, or EDL with age, whereas ETr markedly increased its levels in the muscles. There was a marked decrease with age in expression of the beta2-isoform in the muscle groups that was not reversed by ETr. By contrast, beta3-isoform levels increased with age in GR and GW, and ETr was able to reverse this increase. Na+-K+-ATPase enzyme activity was unchanged with age in GR and GW but increased in EDL. ETr increased enzyme activity in GR and GW and did not change in EDL. Myosin heavy chain isoforms in the muscle groups did not change significantly with age; ETr caused a general shift toward more oxidative fibers. Thus ETr differentially modifies age-associated alterations in expression of Na+-K+-ATPase subunit isoforms, and a mechanism(s) other than physical inactivity appears to play significant role in some of the age-associated changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号