首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Development of drug treatments for obstructive sleep-disordered breathing has been impeded by the lack of animal models. The obese pig may be a suitable animal model, as it has been reported to experience sleep-disordered breathing resembling human obstructive sleep apnea. The purpose of this paper is to describe in detail techniques for chronic instrumentation of the obese Vietnamese pot-bellied pig and to study respiratory function during sleep. Under general anesthesia, four obese pigs were instrumented for long-term recording of intrapleural and tracheal pressures, genioglossal EMG, and bioelectric signals related to sleep. A custom-fitted face mask was used to record respiratory variables including airflow, snoring, and expired CO(2). Most chronic instrumentation provided robust signals for up to 6 wk after installation. All pigs displayed sleep-disordered breathing characterized by increased resistance to airflow, snoring, inspiratory flow limitation, and possible sleep disruption. Apneas and hypopneas were not a feature of breathing during sleep in these animals. Nonetheless, this animal preparation may be useful for exploring possible drug treatments for obstructive sleep-disordered breathing.  相似文献   

2.
The authors consider the respiratory centre to be the regulator of the respiratory system and to consist of 3 main functional blocks: chemoregulator, respiratory rhythm autogenerator and mechanoregulator, functions of which are provided by the neurons of medulla oblongata. The main aim of chemoregulator block is to maintain the level of ventilation volume speed, which is necessary to compensate the difference between the signals of setting and the firing from the chemoreceptors. The main aim of mechanoregulator block is to provide the functioning of the regulation loop of the respiratory muscles comparing the signals which come from the respiratory autogenerator, and the firing of the mechanoreceptors. The generator unit of the respiratory centre is a set of rhythm-forming associations, the system of 4 neurons (early and late inspiratory and expiratory) are typical among them. The neurons are connected by recurrent inhibitory bonds: the neuron of each rhythm-forming group, successively becoming excited, inhibits the two preceding neurons in the cycle; for all this the neuron of the successive group is released from inhibition and in such a way the rhythmogenesis occurs. The respiratory centre forms a common unit for chemo- and mechanoreceptor loops, through which the circuits of feedback for both loops are connected, providing the regulation of breathing.  相似文献   

3.
AimThe aim of this work was to design and evaluate a software tool for analysis of a patient’s respiration, with the goal of optimizing the effectiveness of motion management techniques during radiotherapy imaging and treatment.Materials and methodsA software tool which analyses patient respiratory data files (.vxp files) created by the Varian Real-Time Position Management System (RPM) was developed to analyse patient respiratory data. The software, called RespAnalysis, was created in MATLAB and provides four modules, one each for determining respiration characteristics, providing breathing coaching (biofeedback training), comparing pre and post-training characteristics and performing a fraction-by-fraction assessment. The modules analyse respiratory traces to determine signal characteristics and specifically use a Sample Entropy algorithm as the key means to quantify breathing irregularity. Simulated respiratory signals, as well as 91 patient RPM traces were analysed with RespAnalysis to test the viability of using the Sample Entropy for predicting breathing regularity.ResultsRetrospective assessment of patient data demonstrated that the Sample Entropy metric was a predictor of periodic irregularity in respiration data, however, it was found to be insensitive to amplitude variation. Additional waveform statistics assessing the distribution of signal amplitudes over time coupled with Sample Entropy method were found to be useful in assessing breathing regularity.ConclusionsThe RespAnalysis software tool presented in this work uses the Sample Entropy method to analyse patient respiratory data recorded for motion management purposes in radiation therapy. This is applicable during treatment simulation and during subsequent treatment fractions, providing a way to quantify breathing irregularity, as well as assess the need for breathing coaching. It was demonstrated that the Sample Entropy metric was correlated to the irregularity of the patient’s respiratory motion in terms of periodicity, whilst other metrics, such as percentage deviation of inhale/exhale peak positions provided insight into respiratory amplitude regularity.  相似文献   

4.
In chick embryos, gas exchange takes place via the chorioallantoic membrane (CAM) and the lungs at approximately 1 day prior to hatching. The present study was designed to elucidate the development of respiratory rhythms in the chick embryo during the whole pipping (perinatal) period with a condenser-microphone measuring system. The microphone was hermetically attached on the eggshell over the air cell on day 18 of incubation. It first detected a cardiogenic signal (i.e. acoustocardiogram), and then beak clapping and breathing signals (acoustorespirogram, ARG). The first signals of lung ventilation appeared intermittently and irregularly approximately once per 5 s among the clapping signals after the embryo penetrated its beak into the air cell (internal pipping, IP). The respiratory rhythm then developed irregularly, with a subsequent more regular rate. The envelope pattern of breathing from the onset of IP through external pipping (EP) to hatching was constructed by a specially devised procedure, which eliminated external and internal noises. The envelope patterns indicated that the IP, EP and whole perinatal periods of 10 embryos were 14.1+/-6.4 (S.D.), 13.6+/-4.0 and 27.6+/-5.4 h, respectively. In addition, they also indicated the period of embryonic hatching activity (i.e. climax) which was 48+/-19 min. The development of respiratory rhythm was also shown by the instantaneous respiratory rate (IRR) which was designated as an inverse value of two adjacent ARG waves.  相似文献   

5.
A gas sampling device is described for continuous monitoring of respiratory gas composition that is applicable to experimental conditions when the breathing frequency is very high (greater than 2 Hz) and the response time of conventional gas analyzers becomes a critical limiting factor. The system utilizes the principle of discontinuous gas collection at any selected point of the respiratory cycle facilitated by ultraspeed piezoelectric valves and includes provision for sample-hold characteristics. Two distinct modes of operation are supported. In phase-locked mode gas sampling is synchronous with breathing frequency. In scanning mode gas collection is asynchronous with breathing frequency. Phase-locked mode may be used for continuous monitoring of end-tidal gas concentrations, whereas scanning mode is intended for assessing the gas concentration profile throughout the respiratory cycle. The system may be applied to steady breathing encountered in mechanical ventilation at high frequency or during quasi-steady breathing observed in panting animals. Combined with a respiratory mass spectrometer, the system has been used for measurement of gas concentrations in alveolar gas mixtures at breathing frequencies ranging from 3 to 30 Hz that were otherwise not amenable to rapid measuring techniques.  相似文献   

6.
Previous studies have shown that systemic administration of the opiate antagonist naloxone potentiates the ventilatory response to inspired carbon dioxide. The present study was designed to localize the site of action of naloxone for increasing the respiratory chemosensitivity to inhaled carbon dioxide (CO2) in cats. Naloxone applied topically to the caudal chemosensitive area on the ventral medullary surface (VMS) during hypercapnic breathing produced a 75% greater increase in minute ventilation than hypercapnic breathing alone. Furthermore, hypercapnic breathing produced a 200% increase in neuronal activity of VMS chemosensitive cells; this was further increased 120% by naloxone. It is concluded that naloxone increases the sensitivity of neurons in the caudal respiratory chemosensitive area of cats to hypercapnia, and that endogenous opiates may act as modulators at VMS chemosensitive sites during hypercapnic breathing.  相似文献   

7.
To evaluate the role of endothelin (ET) in respiratory homeostasis we studied the effects of the ET(A) and ET(B) receptor blocking agent bosentan on respiratory mechanics and control in seven anaesthetised spontaneously breathing pigs, for 180 min after single bolus administration (20 mg/kg i.v.). The results show that the block of ET receptors induced a significant increase in compliance and decrease in resistance of the respiratory system, entailing a significant reduction of diaphragmatic electromyographic activity, without affecting the centroid frequency of the power spectrum. Bosentan administration induced a significant increase in tidal volume (V(T)), accompanied by a significant decrease in respiratory frequency, without any significant change in pulmonary ventilation, CO(2) arterial blood gas pressure or pH. Since the relationship between V(T) and inspiratory time remained substantially constant after bosentan administration, the changes in respiratory pattern appear to be the result of an upward shift in inspiratory off-switch threshold. Both inspiratory and expiratory times during occluded breathing were increased by block of ET receptors, suggesting also a central respiratory neuromodulator effect of ET. In conclusion the present results suggest that the block of ET receptors in spontaneously breathing pigs exerts a role on mechanical properties of the respiratory system as well as on peripheral and central mechanisms of breathing control.  相似文献   

8.
The respiratory muscles constitute the respiratory pump, which determines the efficacy of ventilation. Any functional disorder in their performance may cause insufficient ventilation. This study was designed to quantitatively explore the relative contribution of major groups of respiratory muscles to global lung ventilation throughout a range of maneuvers in healthy subjects. A computerized experimental system was developed for simultaneous noninvasive measurement of inspired/expired airflow, mouth pressure and up to 8 channels of EMG surface signals from major respiratory muscles which are located near the skin (e.g., sternomastoid, external intercostal, rectus abdominis and external oblique) during various respiratory maneuvers. Lung volumes values were calculated by integration of airflow data. Hill's muscle model was utilized to calculate the forces generated by the muscles from the acquired EMG data. Analysis of EMG measurements and respiratory muscles forces revealed the following characteristics: (a) muscle activity increased with increased breathing effort, (b) inspiratory muscles contributed to inspiration even at relatively low flow rates, while expiratory muscles are recruited at higher flow rates, (c) the forces generated by the muscle depended on the muscle properties as well as on their EMG performance and (d) the pattern of the muscle's force curves varied between subjects, but were generally consistent for the same subject regardless of breathing effort.  相似文献   

9.
We compared respiratory parameters during natural and self-controlled mechanical breathing to investigate mechanisms of respiratory control in alert humans. The self-control of mechanical breathing is realised manually: duration and velocity of air flow are controlled by left and right hands, resp. In this case, the respiratory afferent information is used to control activity of hand muscles but not of breathing muscles. The findings show that lung ventilation during self-controlled mechanical breathing increases by 7.5 l/min. at resting, by 6.3 l/min. during an exercise, as compared with the natural breathing. The increase in the lung ventilation occurs on account of an increase in the tidal volume but the frequency of the self-controlled mechanical breathing tends to be lesser at resting and was statistically significantly lower in exercise that at natural breathing. The exercise increases the lung ventilation by 13.0 l/min. at natural breathing and by 11.8 l/min. during self-controlled mechanical breathing. The findings suggest that the increased lung ventilation during self-controlled mechanical breathing is connected with creation of a new movement skill, and the modified pattern of self-controlled mechanical breathing is caused by a process of cortical transformation of respiratory afferents signals to efferent signals towards the hand muscles.  相似文献   

10.
An optimization control procedure is developed to describe the function of the human respiratory controller in determination of the respiratory frequency, the expiratory reserve volume, and the physiological dead space volume at all levels of human activity. The required level of alveolar ventilation is considered to have been determined based on the inputs from the peripheral and central chemoreceptors. The proposed procedure describes the mechanical control of breathing in which the excitation signals are adjusted and transferred from the neuron pools in the brainstem to the respiratory muscles to control the rate and depth of breathing. The criterion of minimum average respiratory work rate is used to find the optimal characteristics of respiration. The respiratory frequency, physiologic dead space volume, and expiratory reserve volume are used simultaneously as the optimization variables to minimize the average respiratory work rate. The optimization procedure has been applied by using different airflow patterns at various levels of ventilation. The theoretical results of the study have been compared with the experimental data in exercise taken from the literature. The results show a close agreement between the experimentally measured data and the theoretical values found by the optimization control procedure. The findings attest to the validity of the minimum average work rate criterion and the proposed multivariable optimization procedure compared with other procedures suggested in the literature in control of respiratory mechanics.  相似文献   

11.
Respiratory inductive plethysmography provides a noninvasive method of measuring breathing patterns. Calibration of respiratory inductive plethysmography requires calculation of gain factors for ribcage and abdomen transducers utilizing 2 breathing patterns with different ribcage and abdomen contributions and tidal volume measured by either spirometry or integrated pneumotachography. The purpose of this study was to determine if respiratory inductive plethysmography can be calibrated to provide accurate measurements during quiet and active sleep in lambs. We used a least squares linear regression calibration technique with breaths selected from quiet sleep and active sleep to calculate gain factors in 6 tracheostomized lambs. Validation of gain factors was performed by comparing tidal volumes obtained simultaneously by respiratory inductive plethysmography and pneumotachography during quiet sleep and active sleep. Tidal volume differences between respiratory inductive plethysmography and pneumotachography on validation runs of 15 consecutive breaths each revealed 90% of validation breaths within +/- 20% during quiet sleep and 82% of validation breaths within +/- 20% during active sleep. These data provide evidence that respiratory inductive plethysmography can be calibrated to allow breathing pattern measurement during sleep.  相似文献   

12.
Nasal respiratory turbinates are complex, epithelially lined structures in nearly all birds and mammals that act as intermittent countercurrent heat exchangers during routine lung ventilation. This study examined avian respiratory turbinate function in five large bird species (115-1,900 g) inhabiting mesic temperate climates. Evaporative water loss and oxygen consumption rates of birds breathing normally (nasopharyngeal breathing) and with nasal turbinates experimentally bypassed (oropharyngeal breathing) were measured. Water and heat loss rates were calculated from lung tidal volumes and nasal and oropharyngeal exhaled air temperatures (T(ex)). Resulting data indicate that respiratory turbinates are equally adaptive across a range of avian orders, regardless of environment, by conserving significant fractions of the daily water and heat budget. Nasal T(ex) of birds was compared to that of lizards, which lack respiratory turbinates. The comparatively high nasal T(ex) of the lizards in similar ambient conditions suggests that their relatively low metabolic rates and correspondingly reduced lung ventilation rates may have constrained selection on similar respiratory adaptations.  相似文献   

13.
The question concerning respiratory function reserves among the factors determining the maximal power of muscular work is considered. Even in strenuous physical exercise, pulmonary ventilation does not exceed a rather constant level for every individual. Studies conducted using the programmed isocapnic hyperpnea method developed by the authors demonstrated that this level precisely reflects the functional respiratory reserve that is one of the factors limiting maximal work performance intensity. Under normal conditions, the functional respiratory reserve is 20 to 40% less than the so-called maximal breathing capacity (MBC) determined in a test, which requires voluntarily forcing respiratory efforts and exorbitant energy expenditure for the respiratory muscles performance. Therefore, the MBC should be regarded only as a parameter of ventilatory forced capacity used in extreme situations such as competitive athletic loading or in more resistive breathing when decreased respiratory system reserves become a leading factor rigidly limiting aerobic working capacity. A scheme is given that illustrates the ambiguous role of the respiratory system in this aspect.  相似文献   

14.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [1]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

15.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

16.
A model of the control of the respiratory cycle pattern is presented in which the airflow shape is determined by a dynamic optimization problem. The inspiratory and expiratory phases have different performance criteria both of which are related to the oxygen cost of breathing, and to the minimization of tissue damage and control difficulties. The model successfully predicts various patterns of spontaneous breathing during both inspiration and expiration. The effects of applying elastic and resistive loads to the respiratory system can also be predicted. The model performance is in good agreement with the experimental observation that increasing resistance makes the airflow patterns more rectangular.  相似文献   

17.
To investigate the interindividual differences in respiratory sinus arrhythmia (RSA), recordings of ventilation and electrocardiogram were obtained from 12 healthy subjects for five imposed breathing periods (T(TOT)) surrounding each individual's spontaneous breathing period. In addition to the spectral analysis of the R-R interval signal at each breathing period, RSA characteristics were quantified by using a breath-by-breath analysis where a sinusoid was fitted to the changes in instantaneous heart rate in each breath. The amplitude and phase (or delay = phase x T(TOT)) of this sinusoid were taken as the RSA characteristics for each breath. It was found that for each subject the RSA amplitude-T(TOT) relationship was linear, whereas the delay-T(TOT) relationship was parabolic. However, the parameters of these relationships differed between individuals. Linear correlation between the slopes of RSA amplitude versus T(TOT) regression lines and 1) mean breathing period and 2) mean R-R interval during spontaneous breathing were calculated. Only the correlation coefficient with breathing period was significantly different from zero, indicating that the longer the spontaneous breathing period the lesser the increase in RSA amplitude with increasing breathing period. Similarly, only the correlation coefficient between the curvature of the RSA delay-T(TOT) parabola and mean breathing period was significantly different from zero; the longer the spontaneous breathing period the larger the curvature of RSA delay. These results suggest that the changes in RSA characteristics induced by changing the breathing period may be explained partly by the spontaneous breathing period of each individual. Furthermore, a transfer function analysis performed on these data suggested interindividual differences in the autonomic modulation of the heart rate.  相似文献   

18.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

19.
We report that nicotine is responsible for both a blood-borne stimulation of the respiratory center and a direct effect on intrathoracic airway tone in dogs. We introduced cigarette smoke into the lungs of donor dogs and injected arterial blood obtained from them into the circulation of recipient dogs to show that a blood-borne material increased breathing and airway smooth muscle tone. Smoke from cigarettes containing 2.64 mg of nicotine was effective; that from cigarettes containing 0.42 mg of nicotine was not. Nicotine, in doses comparable to the amounts absorbed from smoke, also increased breathing and tracheal smooth muscle tension when injected into the vertebral circulation of recipient dogs. Finally, blockade of nicotine receptors in the central nervous system and in the airway parasympathetic ganglia inhibited the effects of inhaled cigarette smoke and intravenous nicotine on the respiratory center and on bronchomotor tone. We conclude that nicotine absorbed from cigarette smoke is the main cause of cigarette smoke-induced bronchoconstriction. It caused central respiratory stimulation, resulting in increased breathing and airway smooth muscle tension, and had a direct effect on airway parasympathetic ganglia as well.  相似文献   

20.
The latest data on the mechanisms of the control of respiratory muscles are reviewed. For systematization of these mechanisms, it is suggested to classify them into three levels: the autonomous (basic) level, which controls pulmonary ventilation under conditions of eupnea; the adaptive level, which coordinates breathing with other motor functions and an additional load on the respiratory system; and the voluntary level, which is specific for humans. Mechanisms of breathing control when performing the speech function, as well as during an increase in the resistance to breathing, are considered as an example of the adaptive level of control. In this connection, much attention is paid to the function of muscles of the upper airways, whose role in the breathing act is often ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号