首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

2.
Tidal influences on appendicularian densities were observedat North Inlet, South Carolina, by sampling along a transectwhich ran from a tidal creek to a station 5 km offshore. Oikopleuradioica was the dominant species in North Inlet, while Oikopleuralongicauda and Appendicularia sicula contributed marginallyto appendicularian numbers during midsummer and fall. A strongtide-dependent density pattern was clear for inshore waters.Low-tide densities of all three species showed a dramatic increasein an offshore direction. At high tide, densities were similarbetween all stations for O. dioica, while O. longicauda andA. sicula showed a less pronounced density gradient than atlow tide. Population densities within the inlet were greateron spring tides than neap tides and tidal influences were generallyconsistent between seasons. Appendicularians enter the estuaryin densities as high as 20 072 animals m–3, indicatingthat tidal currents may be an important mechanism for exchangeof appendicularian biomass between coastal and estuarine waters. 1Present address: Allan Hancock Foundation, University of SouthernCalifornia, Los Angeles, CA 90007, USA.  相似文献   

3.
Carbon flux by seasonal vertical migrant copepods is a small number   总被引:2,自引:1,他引:1  
The abundant species of Calanus that dominate the mesozooplanktonof high North Atlantic latitudes overwinter at depths >500m, when the population loses 70–80% of its biomass bypredation and physiological stress. This represents an annualflux of carbon, obtained in the photic zone, into the interiorof the ocean of 274.5 mg C m–2 year–1, or 0.0018Gt C year–1 for the North Atlantic. This is a small valuecompared with the flux of respiratory carbon by diel migrantsin warmer oceans and, when extrapolated to a global flux (0.012–0.018Gt C year–1 over areas where winter migrations are importantis also small compared with computations of the global sinkingflux of particles through 200 m (1.6–3.8 Gt C year–1or other relevant global carbon fluxes in the oceans.  相似文献   

4.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

5.
The trophic relation between prokaryotes and heterotrophic nanoflagellateswas studied during two latitudinal cruises in the central AtlanticOcean. The losses to predation on prokaryotes were determinedin 12 locations covering a wide range of trophic situations,from ultraoligotrophic [<0.05 mg chlorophyll a (Chl a) m–3]to moderately eutrophic waters (>1 mg Chl a m–3). Inthese locations, the abundance of prokaryotes (P) covaries withthat of heterotrophic nanoflagellates, thus suggesting thatresources controlled the abundance of heterotrophic nanoflagellates(HNF). Besides, the losses to predation were positively relatedto prokaryotic and heterotrophic nanoflagellate biomass, whichpoints toward higher consumption rates associated with largerconcentrations of preys and predators. Conversely, decliningtrends between prokaryotic production (PP) and the fractionof this production lost to predation revealed higher relativelosses in the environments with lower productions. Our studyshows for the central Atlantic that 35% of prokaryotic biomass(BP), equating to between 40 and 83% of PP can be ingested dailyand that 55% of the variability observed in the rate of prokaryoticloss to predation was related with the HNF. As predators grazeon many prey types, in an oligotrophic system containing manyprey species but little numeric loading, there will still beprey for predators but not enough hosts for viruses. In thissense, our study confirms the importance of the prey–predatorrelationship between prokaryotes and heterotrophic nanoflagellatesin the flow of carbon of the less productive regions of theocean.  相似文献   

6.
Dinoflagellate cyst production at a coastal Mediterranean site   总被引:7,自引:0,他引:7  
To assess the diversity and seasonality of dinoflagellate cystproduction, surface sediment and trap samples were studied inthe Gulf of Naples (Mediterranean Sea). A total of 59 differentcyst morphotypes were recorded. At the stations within the 70m isobath, sediment assemblages were dominated by calcareousPeridiniales (66–79%), while at the deepest stations non-calcareousPeri-diniales attained the highest percentages (40–49%).The sediment trap sampling, carried out fortnightly over twoannual cycles, revealed high production rates (up to 1.7 x 106cysts m–2 day–1) from spring to late autumn of bothyears, with a distinct seasonal production pattern. Althoughrather similar in species composition, the total cyst flux differedmarkedly between the 2 years (1.26 and 0.55 x 108 cysts m–2year–1, respectively). Species-specific production patternswere observed: some species formed cysts over several months,others in restricted periods of the year. Cyst-forming speciesconstituted a small part of the planktonic dinoflagellate populationsrecorded in the area. A coupling between the trap material andsurface water plankton was observed for calcareous Peridiniales.This sampling approach allowed the detection of some speciesnever recorded before in the gulf, including two potentiallytoxic species: Alexandrium andersoni and Gymnodinium catenatum-likespecies.  相似文献   

7.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

8.
Halosarcia pergranulata(P. G. Wilson) subsp.pergranulatais amember of the Salicornioideae and is native to Australia. Salttolerance inH. pergranulatasubsp.pergranulatawas assessed bygrowing plants for 83 d at seven NaCl concentrations from 10to 800 mol m-3. Shoot biomass was greatest for plants grownat 10 to 200 mol m-3NaCl, while at salinities of 300 mol m-3orhigher it was inhibited. There was little increase in succulencein response to NaCl, and it even declined at the highest salinities.The K+[ratio]Na+molar ratio in succulent shoot tissues decreasedfrom 0.30[ratio]1 in plants grown at 10 mol m-3NaCl to 0.02[ratio]1in plants at 600 mol m-3, due to a three-fold increase in tissueNa+concentration and a five-fold decline in tissue K+. The osmoticpotential of sap (  相似文献   

9.
Abstract We surveyed herbaceous biomass across the range of Eucalyptus tetrodonta savannas in north‐western Australia. Sample sites (n = 211) were stratified within four broad geographical regions characterized by different mixes of land management regimes. Grasses dominated (87% mean) the herbaceous biomass. After controlling for climatic and edaphic gradients, herbaceous biomass was highest in the Greater Darwin region (2.2 t ha−1) which is managed predominantly by Europeans, and least under semi‐traditional Aboriginal management in Arnhem Land region (1.1 t ha−1). In the drier Gulf of Carpentaria and Kimberley regions, where a mix of Aboriginal, conservation and pastoral land uses occurs, fuel loads were higher than in Arnhem Land region but still considerably lower than around Darwin. Sarga was recorded in all regions except the Gulf of Carpentaria and had the highest biomass in Darwin (0.88 t ha−1) and lowest biomass in the Kimberley (0.54 t ha−1). The proportion of herbaceous biomass made up of perennial grasses was least in Darwin (17%) and greatest in the Gulf (77%) regions. We suggest that climate, soils and land management account for differences between the drier pastoral regions of the Gulf of Carpentaria and the Kimberley and the wet Greater Darwin region relative to the Arnhem Land region. The high frequency, and larger spatial scale, of fires in the Greater Darwin region relative to the Arnhem Land region underpins the contrasting trends in total herbaceous biomass and abundance of flammable annual grasses.  相似文献   

10.
The life cycles, biomass and secondary production of three sympatricfreshwater basommatophoran snails, Lymnaea palustris (MÜller),Physa fontinalis Linnaeus and Anisus rotundatus (Poiret) werestudied during two years in a freshwater ditch. L. palustrisexhibited an iteroparous life-cycle whereas the two other speciespresented a semelparous life-cycle, adults died just after oviposition.L. palustris secondary production (dry weight) value was higher(P = 11 298.4 mg 0.1 m–1 yr–1) than those of P.fontinalis (P = 846.3 mg 0.1 m–2 yr–1) and A. rotundatus(P = 1192 mg 0.1 m–2 yr–1). (Received 16 March 1992; accepted 30 June 1992)  相似文献   

11.
Time series of phytoplankton biomass and taxonomic compositionhave been obtained for the 3 years 1992, 1993 and 1994 in thenorthern part of the Southern Ocean (station Kerfix, 5040'S,6825;E) Autotrophic biomass was low throughout the year (<0.2mg m–3 except during a short period in summer when a maximumof 1.2 mg chlorophyll (Chl) a m– was reached. During winter,the integrated biomass was low (<10 mg m–2) and associatedwith deeply mixed water, whereas the high summer biomass (>20mg m–2) was associated with increased water column stability.During summer blooms, the >10 µ;m size fraction contributed60% to total integrated biomass. Large autotrophic dinoflagellates,mainly Prorocentrum spp., were associated with the summer phytoplankton maxima and accounted for >80% of the total autotrophcarbon biomass. In November and December, the presence of thelarge heterotrophic dinoflagellates Protoperidinium spp. andGyro dinium spp. contributed a high proportion of total carbonbiomass. During winter, the <10 µm size fraction contributed80% of total Chi a biomass with domination of the picoplanktonsize fraction. The natural assemblage included mainly nakedflagellates such as species of the Prasinophyceae, Cryptophyceaeand Prymnesiophyceae. During spring, picocyanobacteria occurredin sub-surface water with a maximum abundance in September of106 cells 1–1  相似文献   

12.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

13.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

14.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

15.
Production of Penilia avirostris in Kingston Harbour, Jamaica   总被引:2,自引:0,他引:2  
The cladoceran Penilia avirostris is one of the more abundantand widespread members of the crustacean zooplankton in nearshoretropical and subtropical waters. Its abundance, biomass, fecundity,development rate and production were estimated in Kingston Harbour,Jamaica, during an 18 month period. Mean annual abundance ofPenilia was 1821 m–3, while biomass (excluding eggs/embryos)was 2.87 mg ash-free dry-weight (AFDW) m–3 (43.1 mg AFDWm–2), accounting for 13% of the copepod community biomass.Fecundity increased with body size. There was no clear seasonalpattern of abundance, size or fecundity, nor were physical orbiological variables correlated to these variations. Developmenttime averaged 20.5 h for juveniles and 41.4 h for adult femalesduring incubations; there was no clear evidence of a diel patternto molting. Growth rate appeared to be exponential, with correspondingsomatic growth rates, averaging 0.27 day–1 for juveniles,and 0.34 day–1 for somatic plus reproductive growth inadult females. Annual production was estimated as 173 kJ m–2year–1,  相似文献   

16.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

17.
Daytime surface swarms of Meganyctiphanes norvegica in the Bayof Fundy were examined using a variety of techniques to providemeasurements of their shapes, sizes and densities. Shapes andsizes were determined from two aerial photographs: swarms werespherical, ribbon-like or amorphous. were up to 28 6 m longand ranged in area from 0.4–111 7 m2. Densities were measuredby a bag-sampling device which gave figures of up to 41 000animals m–3 by photographic methods which gave figuresof up to 770 000 animals m–3 and by a plankton net whichgave maximum values of six animals m–3 Using the photographicmethod the maximum euphausud biomass was estimated to be 154kg m–3 within swarms and the largest swarm measured wasestimated to contain up to 2 1 tonnes of M. norvegica. Meanpatch biomass estimates for the two aerial photographs rangedfrom 77.8–778 g m–3 and 15 6–155.6 g m–3which are similar to figures obtained by other authors usingintegrating sampling techniques at depth.  相似文献   

18.
以青海省达日县高寒草甸原生高寒嵩草(Kobresia)草甸封育系统为对照,研究了土地退化对植被生产力的影响,检验了不同人工重建措施(两个人工种植处理:混播(HB)、翻耕单播(DBF)和1个退化草地封育自然恢复处理(NR)及1个退化草地自然状态(SDL))对植被生产力的相对影响程度。结果表明,原生植被封育处理(YF)地上总生物量为265.1 g·m-2,混播(HB)和翻耕单播(DBF)处理中地上总生物量分别为原生植被封育处理的116%和68%。退化草地封育自然恢复处理(NR)和重度退化自然状态下地上总生物量分别为原生植被封育的76%和53%。YF处理根系生物量远大于其它处理。原生植被封育系统中植被地上部分碳储量为 110.14 g·m-2,地下根系(0~30 cm)碳储量为2 957 g·m-2,植被总碳储量为 3 067.14 g·m-2;重度退化草地系统中植被地上部分碳储量为 57.07 g·m-2,地下根系(0~30 cm)碳储量为 357 g·m-2,植被总碳储量为 414.07 g·m-2。由此可见,高寒草甸严重退化后,通过植物组织流失的碳达到2 653.35 g·m-2,即86.5%的碳损失;原生植被封育系统植被总氮储量为 56.85 g·m-2,而重度退化草地植被总氮储量为 18.02 g·m-2,高寒草甸严重退化使植物组织68.30%氮损失。与重度退化地相比,由于恢复重建措施增加了植物的生物量输入和群落组成,除翻耕单播处理外,其它恢复重建措施均能恢复系统植被的碳氮储量。这些恢复重建措施将会逐步改善土壤的物理和化学特性,最终使这些生态系统逐步由碳源向碳汇方向的转变成为可能。  相似文献   

19.
Seasonal variation of the biomass (B), production (P) and P/Bratio of the numerically dominant crustaceans in Lake Awasa(Mesocydops aequatonalis stmilts, Thermocyclops consunilis andDiaphanosoma exisum) were studied during 1986 and 1987. Quantitativenet samples (64 (xm mesh) were taken at three stations on 10day intervals throughout 1986, and the dry weights and developmenttimes for each life stage were obtained from laboratory measurementsand cultures Total biomass of most of the dominant crustaceans,determined from 390 samples during 1986, was 44.85 mg m3(dry weight, DW) with adult females of Mesocyclops making >43.5%.Alona diaphana, another common crustacean, is dealt with ina separate paper, as are the Rotifera. Production of the dominantcrustaceans during 1986 was estimated by the growth incrementsummation (Winberg) and instantaneous growth (Ricker) methodsThe annual integrated production of the two dominant cyclopoidsis 535.2 mg (DW) m3 (Winberg) while annual crustaceanproduction totals 2.5 g (DW) m3 (Ricker) The mean annualP/B ratio for individual species and stages varied from 221.0for Diaphanosoma, to 121.7-143.0 for nauplii and 9.8–187 for copepodites of the cyclopoids It was 55 8 for the dominantzooplankton species Low or high zooplankton production and biomassturnover rates (P/B) cannot be used to characterize all tropicallakes consistently However, production per unit biomass is likelyto be higher in tropical lakes.  相似文献   

20.
Basin-scale latitudinal patterns of copepod grazing in the Atlantic Ocean   总被引:1,自引:0,他引:1  
Size-fractionated copepod abundance and ingestion rates wereinvestigated along a 50°S–50°Nlatitudinal transect,during the Atlantic Meridional Transect (AMT) 4, 5 and 6 cruises(boreal spring–autumn 1997, boreal spring–summer1998). Copepod abundance was higher at high latitudes in spring,near northwest Africa, in the equatorial and Benguela upwellingsystems, and in the Subtropical Convergence, and lower in oligotrophicgyres. Gut contents were not related to phytoplankton biomassor production. Gut evacuation rate averaged 0.03 min-1, andwas not related to latitude or body size. Conservative estimatesof copepod community total ingestion rates ranged between 3.4and 173 mg C m-2 day-1 for AMT4, 1.6–252 mg C m-2 day-1in AMT5 and 10–160 mg C m-2 day-1 in AMT6. Maximum valueswere always in the upwelling regions, the subtropical convergenceand high latitudes in the Northern Hemisphere during borealspring. Calculated ingestion rates translate into average dailyminimal consumption values of 2.07%, 1.89% and 2.6% of totalchlorophyll stock, or 8.02%, 14.5% and 12.9% of total primaryproduction ingested daily on AMT4, 5 and 6 respectively. Grazingimpact increases considerably if we consider ingestion of phytoplanktonlarger than 2 µm, especially under the influence of theEquatorial and North African upwellings, where copepod ingestionrepresents up to 30% of the biomass and >100% of productionby large cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号