共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher D. Boone Sonika Gill Chingkuang Tu David N. Silverman Robert McKenna 《Archives of biochemistry and biophysics》2013
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π–π or C–H?π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via 18O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3–4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C–H?π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability. 相似文献
2.
Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: molecular basis of isozyme-drug discrimination. 下载免费PDF全文
T. Stams Y. Chen P. A. Boriack-Sjodin J. D. Hurt J. Liao J. A. May T. Dean P. Laipis D. N. Silverman D. W. Christianson 《Protein science : a publication of the Protein Society》1998,7(3):556-563
Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some local structural differences are found in the active site resulting from amino acid sequence differences in the "130's segment" and the residue-63 loop (these may affect the nearby catalytic proton shuttle, His-64). Similar to human CAIV, the C-terminus of murine CAIV is surrounded by a substantial electropositive surface potential that may stabilize the interaction with the phospholipid membrane. Binding interactions observed for brinzolamide rationalize the generally weaker affinity of inhibitors used in glaucoma therapy toward CAIV compared with CAII. 相似文献
3.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):880-885
The possible sulfatase activity of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated with a series of synthesized methanesulfonate derivatives of phenols. Four α-CA isozymes, i.e. hCA I, hCA II, hCA IV and hCA VI (h?=?human isoform), were included in the study. We evidenced that the original sulfonate esters are being hydrolyzed effectively to the corresponding phenols which there after act as CA inhibitors. The KI-s of these compounds ranged from 10.24 to 4012 µM against hCA I, 0.10 to 35.42 µM against hCA II, 0.49 to 45.06 µM against hCA IV and 3.27 to 608 µM against CA VI, respectively. The relevant sulfatase activity of CA with these esters is amazing considering the fact that 4-nitrophenyl-sulfate, an activated ester, is not a substrate of these enzymes. 相似文献
4.
Rose L. Mikulski David N. Silverman 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(2):422-426
The undisputed role of His64 in proton transfer during catalysis by carbonic anhydrases in the α class has raised questions concerning the details of its mechanism. The highly conserved residues Tyr7, Asn62, and Asn67 in the active-site cavity function to fine tune the properties of proton transfer by human carbonic anhydrase II (HCA II). For example, hydrophobic residues at these positions favor an inward orientation of His64 and a low pKa for its imidazole side chain. It appears that the predominant manner in which this fine tuning is achieved in rate constants for proton transfer is through the difference in pKa between His64 and the zinc-bound solvent molecule. Other properties of the active-site cavity, such as inward and outward conformers of His64, appear associated with the change in ΔpKa; however, there is no strong evidence to date that the inward and outward orientations of His64 are in themselves requirements for facile proton transfer in carbonic anhydrase. 相似文献
5.
In this exploratory study, we investigated total erythrocyte carbonic anhydrase (CA) estrase activity as well as CA I isozyme
concentration in patients with diabetes mellitus type II (DM) and healthy individuals of Howard University Hospital community.
Total estrase activity of CA was measured spectrophotometrically using p-nitrophenol acetate before and after inhibition with
acetazolamide. CA I isozyme was measured by radial immunodiffusion using monoclonal antibody (CA I) in agarose plates. The
study involved 20 consented participants; 10 normal (N) and 10 (DM), 21 to 84 years of age. The study was approved by the
Howard University Institution Review Board. The CA activity was measured following lysis of cells as U/min/mL and CA I concentration
as mg/l. We observed CA activity as 46.3±4(N) and 25±2.1 (DM) whereas CA I concentration as 1896±125 (N) and 1104 ±63 (DM).
We speculate that the change in the CA activity may of fundamental importance in the regulation of intracellular; pHi for the basic control of metabolism in diabetes mellitus. Further, we propose that CA activity is a good candidate for a
biomarker of diabetes mellitus for the early detection of insulin resistance because the CA activity variation was proportional
to the severity of the diabetes.
Jehan Ornasir—these studies were undertaken as a partial requirement of her M.S. Degree, Graduate School, Howard University,
Washington, DC, USA 相似文献
6.
Computer simulation techniques are used to address the question of how cyanide and related ions interact with human carbonic anhydrase II (HCAII). Spectroscopic results have suggested that cyanide is coordinated with the zinc ion, while recent X-ray results suggest that the cyanide ion is noncovalently associated with the zinc–water or zinchydroxide form of the enzyme. We have carried out simulations on three models in an attempt to shed light on why the spectroscopic and X-ray results differ. The first model we studied (Model I) has cyanide directly coordinated to the zinc ion, the second has it noncovalently interacting with the zinc–hydroxide (high pH) form of the enzyme (Model II), and the third has cyanide noncovalently interacting with the zinc–water (low pH) form of the enzyme (Model III). None of these models is satisfactory in explaining the available structural data obtained from X-ray crystallography. This leads us to propose an alternative model, in which HCAII hydrates HCN to form an OH?/HCN complex coordinated to the Zn ion. Ab initio calculations are consistent with this model. Based on these results we are able to explain the observed crystallographic behavior of cyanate and, by inference, thiocyanate. © 1993 Wiley-Liss, Inc. 相似文献
7.
The structure of human erythrocytic carbonic anhydrase II has been refined by constrained and restrained structure–factor least-squares refinement at 2.0 Å resolution. The conventional crystallographic R value is 17.3%. Of 167 solvent molecules associated with the protein, four are buried and stabilize secondary structure elements. The zinc ion is ligated to three histidyl residues and one water molecule in a nearly tetrahedral geometry. In addition to the zinc-bound water, seven more water molecules are identified in the active site. Assuming that Glu-106 is deprotonated at pH 8.5, some of the hydrogen bond donor–acceptor relations in the active site can be assigned and are described here in detail. The Oγ1 atom of Thr-199 donates its proton to the Oε1 atom of Glu-106 and can function as a hydrogen bond acceptor only in additional hydrogen bonds. 相似文献
8.
Zhang Q Liang X Zhu B Dong Q Xu L Xia L Hu J Fu J Liu M 《Cell biology international》2006,30(9):714-720
The present study was designed to determine the effects of fluid shear stress on the mRNA expression of carbonic anhydrase II (CAII) in polarized rat osteoclasts. Cellular morphology of the polarized osteoclasts generated by a mechanical anatomical technique was examined by tartrate-resistant acid phosphatase (TRAP) staining and the osteoclastic resorption of dentine slices. The polarized osteoclasts were then stress-loaded by using a flow shear stress device newly developed by the osteoclast research group (patent number 200420034438; China), at 9 dyne/cm(2) for various time periods [0 (control group), 15, 30, 60, and 120 min], or at various stress levels [0 (control), 0.9, 2.9, 8.7, and 26.3 dyne/cm(2)] for 30 min. The mRNA expression of CAII was quantified using real-time fluorescent quantitative PCR (RT-PCR) and the data were analyzed with SPSS 12.0 software. The polarized osteoclasts were larger than regular monocytes (about 30 microm diameter) with irregular configuration, and the majority of polarized osteoclasts appeared to be spherical and had approximately 2-20 nuclei. The TRAP positive polarized osteoclasts showed asymmetrical red staining in the cytoplasm, and had many filaments and vacuoles. These cells formed resorptive pits in dentine slices. The levels of CAII mRNA expression were shown to be time-dependent, with the E+5 copy numbers being 7.88+/-0.09, 11.14+/-0.12, 15.83+/-0.18, 1.94+/-0.02, and 1.37+/-0.01 in cells treated at 9 dyne/cm(2) for 0, 15, 30, 60 and 120 min, respectively (P < 0.05). The levels of CAII mRNA expression (E+5 copy numbers) in cells treated with the stress levels of 0, 0.9, 2.9, 8.7 and 26.3 dyne/cm(2) were 7.97+/-0.201, 11.26+/-0.688, 15.94+/-0.201, 31.88+/-1.496, and 45.08+/-2.639, respectively (P < 0.05). These results indicate that there is a relationship between the fluid shear stress and the mRNA expression of CAII in polarized rat osteoclasts. 相似文献
9.
We have investigated the possible proton transfer pathways from the surface of the protein to the zinc-bound water molecule in the mutant His-64-Ala of human carbonic anhydrase II. Starting with an input of known crystallographic structures of the mutant, we model the proton pathways as hydrogen-bonded networks of proton conducting groups and bound solvent molecules. No proton path is detected in the mutant, in close agreement with the experimental observation of a 20-fold decrease in its catalytic efficiency compared to the wild-type enzyme. We also investigate in detail changes in hydration structure at the active site of the mutant and the resulting proton paths in the presence of an exogenous proton donor 4-methylimidazole (4-MI). The proton transfer pathways thus detected are correlated to the observed chemical rescue of catalytic activity by 4-MI. 相似文献
10.
11.
J Vidgren A Liljas N P Walker 《International journal of biological macromolecules》1990,12(6):342-344
The binding of acetazolamide to human carbonic anhydrase II (HCA II) has been investigated by X-ray crystallography. The atomic positions of the enzyme inhibitor complex have been refined at 1.9 Å resolution using the least squares refinement program package PROLSQ. The crystallographic R-factor is 17.6%. The bound inhibitor is clearly resolved in the active site of the enzyme. The acetazolamide amine group is bound as a fourth ligand to the zinc ion, the other three are all histidine residues. In addition to van der Waals' interactions and the previously described binding of the sulphonamide group, the inhibitor forms a hydrogen bond from the carbonyl oxygen of the acetylamido group to the amino group of Gln 92. 相似文献
12.
Small molecule rescue of mutant forms of human carbonic anhydrase II (HCA II) occurs by participation of exogenous donors/acceptors in the proton transfer pathway between the zinc-bound water and solution. To examine more thoroughly the energetics of this activation, we have constructed a mutant, H64W HCA II, which we have shown is activated by 4-methylimidazole (4-MI) by a mechanism involving the binding of 4-MI to the side chain of Trp-64 approximately 8 A from the zinc. A series of experiments are consistent with the activation of H64W HCA II by the interaction of imidazole and pyridine derivatives as exogenous proton donors with the indole ring of Trp-64; these experiments include pH profiles and H/D solvent isotope effects consistent with proton transfer, observation of approximately fourfold greater activation with the mutant containing Trp-64 compared with Gly-64, and the observation by x-ray crystallography of the binding of 4-MI associated with the indole side chain of Trp-64 in W5A-H64W HCA II. Proton donors bound at the less flexible side chain of Trp-64 in W5A-H64W HCA II do not show activation, but such donors bound at the more flexible Trp-64 of H64W HCA II do show activation, supporting suggestions that conformational mobility of the binding site is associated with more efficient proton transfer. Evaluation using Marcus theory showed that the activation of H64W HCA II by these proton donors was reflected in the work functions w(r) and w(p) rather than in the intrinsic Marcus barrier itself, consistent with the role of solvent reorganization in catalysis. 相似文献
13.
Maria I. C. Sampaio Maria P. C. Schneider Carmem M. L. Barroso Barbara T. F. Silva Horacio Schneider Filomeno Encarnacion Enrique Montoya Francisco M. Salzano 《International journal of primatology》1991,12(4):389-402
Carbonic anhydrase II electrophoretic patterns were investigated in 3113 animals belonging to 12 genera and 24 species of
New World primates. Polymorphism was detected in 13 species. A total of 24 different alleles was postulated to explain the
variability found; the genusAotus showed the highest (eight) number of such alleles. Three genera of the family Callitrichidae (Callithrix, Saguinus, andCebuella) presented five alleles that were not found among the Cebidae. Important markers at the generic level were observed inCallicebus (CA2
*6 andCA2
*12),Cebus (CA2
*10, CA2*16, andCA2
*21), andAotus (CA2*3, CA2*4, CA2*5, CA2*9, CA2*15, CA2*17, CA2*22, CA2*23). CA2*13 seems to be the most common allele among the Cebidae; six genera of this family showed frequencies higher than 70% of it. 相似文献
14.
碳酸酐酶(carbonic anhydrase)作为一种活性中心含有锌离子的金属酶,能够可逆催化CO2生成碳酸氢盐的水合反应,该反应在生物体内承担着多样的生理学功能,具有高度的生物学意义。除广泛存在于真核生物以外,该酶在淡水、海水、嗜常温、嗜热、厌氧、好氧、致病、产酸、自养、异养等多种原核微生物中也有广泛的分布,并参与光合作用、呼吸作用和以CO2作为底物的反应,维持生理pH以及离子转运等生理过程。近年来,随着温室效应的日益加剧.生物固定CO2作为该酶的一种全新应用引起了研究者的广泛关注。回顾了碳酸酐酶作为催化剂参与CO2固定过程的历史、现状和最新发现,同时展望了未来应用的趋势。 相似文献
15.
Ramin Ekhteiari Salmas Mert Mestanoglu Elif Çelenk Kaya 《Journal of enzyme inhibition and medicinal chemistry》2016,31(1):31-37
A series of hydroxy and phenolic compounds have been assayed for the inhibition of two physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II. The investigated molecules showed inhibition constants in the range of 1.07–4003 and 0.09–31.5?μM at the hCA I and hCA II enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are compared using three different scoring algorithms, namely Glide/SP, Glide/XP and Glide/IFD. In addition, different ADME (absorption, distribution, metabolism and excretion) analysis was performed. All the examined compounds were found within the acceptable range of pharmacokinetic profiles. 相似文献
16.
Sumathra Manokaran Jayati Banerjee Sanku Mallik D.K. Srivastava 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(10):1965-1973
We synthesized a fluorogenic dansylamide derivative (JB2-48), which fills the entire (15 Å deep) active site pocket of human carbonic anhydrase I, and investigated the contributions of sulfonamide and hydrophobic regions of the ligand structure on the spectral, kinetic, and thermodynamic properties of the enzyme–ligand complex. The steady-state and fluorescence lifetime data revealed that the deprotonation of the sulfonamide moiety of the enzyme bound ligand increases the fluorescence emission intensity as well as the lifetime of the fluorophores. This is manifested via the electrostatic interaction between the active site resident Zn2+ cofactor and the negatively charged sulfonamide group of the ligand, and such interaction contributes to about 2.2 kcal/mol (ΔΔG°) and 0.89 kcal/mol (ΔΔG‡) energy in stabilizing the ground and the putative transition states, respectively. We provide evidence that the anionic and neutral forms of JB2-48 are stabilized by the complementary microscopic/conformational states of the enzyme. The implication of the mechanistic studies presented herein in rationale design of carbonic anhydrase inhibitors is discussed. 相似文献
17.
1H‐indazole molecules reduced the activity of human erythrocytes carbonic anhydrase I and II isoenzymes 下载免费PDF全文
Carbonic anhydrase (CA) is an important metabolic enzyme family closely related to many physiological and pathological processes. Currently, carbonic anhydrase inhibitors are the target molecules in the treatment and diagnosis of many diseases. In present study, we investigated the inhibitory effects of some indazole molecules on the CA‐I and CA‐II isoenzymes isolated from human erythrocytes. We showed that human CA‐I and CA‐II activities were reduced by of some indazoles at low concentrations. IC50 values, Ki constants, and inhibition types for each indazole molecule were determined. The indazoles showed Ki constants in a range of 0.383 ± 0.021 to 2.317 ± 0.644 mM, 0.409 ± 0.083 to 3.030 ± 0.711 mM against CA‐I and CA‐II, respectively. Each indazole molecule exhibited a noncompetitive inhibition effect. Bromine‐ and chlorine‐bonded indazoles were found to be more potent inhibitory effects on carbonic anhydrase isoenzymes. In conclusion, we conclude that these results may be useful in the synthesis of carbonic anhydrase inhibitors. 相似文献
18.
Alessio Nocentini Mariangela Ceruso Claudiu T. Supuran 《Journal of enzyme inhibition and medicinal chemistry》2016,31(6):1226-1233
Sulfocoumarins behave as interesting inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Here, we report a new series of 7-substituted derivatives which were obtained by the click chemistry approach from 7-propargyloxy-sulfocoumarin and aryl azides incorporating halogens, hydroxy, methoxy and carboxyl moieties in their molecules. The new compounds were screened for the inhibition on four physiologically relevant human CA (hCA) isoforms, the cytosolic hCA I and II and the transmembrane tumor-associated hCA IX and XII. The new compounds did not inhibit the cytosolic isoforms but were low nanomolar inhibitors of the tumor-associated ones hCA IX and XII. 相似文献
19.
Renate J Scheibe Gerolf Gros Seppo Parkkila Abdul Waheed Jeffrey H Grubb Gul N Shah William S Sly Petra Wetzel 《The journal of histochemistry and cytochemistry》2006,54(12):1379-1391
Expression of membrane-bound carbonic anhydrases (CAs) of CA IV, CA IX, CA XII, and CA XIV has been investigated in the mouse heart. Western blots using microsomal membranes of wild-type hearts demonstrate a 39-, 43-, and 54-kDa band representing CA IV, CA IX, and CA XIV, respectively, but CA XII could not be detected. Expression of CA IX in the CA IV/CA XIV knockout animals was further confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Cardiac cells were immunostained using anti-CA/FITC and anti-alpha-actinin/TRITC, as well as anti-CA/FITC and anti-SERCA2/TRITC. Subcellular CA localization was investigated by confocal laser scanning microscopy. CA localization in the sarcolemmal (SL) membrane was examined by double immunostaining using anti-CA/FITC and anti-MCT-1/TRITC. CAs showed a distinct distribution pattern in the sarcoplasmic reticulum (SR) membrane. CA XIV is predominantly localized in the longitudinal SR, whereas CA IX is mainly expressed in the terminal SR/t-tubular region. CA IV is present in both SR regions, whereas CA XII is not found in the SR. In the SL membrane, only CA IV and CA XIV are present. We conclude that CA IV and CA XIV are associated with the SR as well as with the SL membrane, CA IX is located in the terminal SR/t-tubular region, and CA XII is not present in the mouse heart. Therefore, the unique subcellular localization of CA IX and CA XIV in cardiac myocytes suggests different functions of both enzymes in excitation-contraction coupling. 相似文献
20.
Human carbonic anhydrase II (HCA II) has a histidine at position 64 (His64) that donates a proton to the zinc-bound hydroxide in catalysis of the dehydration of bicarbonate. To examine the effect of the histidine location on proton shuttling, His64 was replaced with Ala and Thr200 replaced with histidine (H64A-T200H HCAII), effectively relocating the proton shuttle residue 2 A closer to the zinc-bound hydroxide compared to wild type HCA II. The crystal structure of H64A-T200H HCA II at 1.8 A resolution shows the side chain of His200 directly hydrogen-bonded with the zinc-bound solvent. Different proton transfer processes were observed at pH 6 and at pH 8 during the catalytic hydration-dehydration cycle, measured by mass spectrometry as the depletion of 18O from C18O2 by H64A-T200H HCA II. The process at pH 6.0 is attributed to proton transfer between the side chain of His200 and the zinc-bound hydroxide, in analogy with proton transfer involving His64 in wild-type HCA II. At pH 8.0 it is attributed to proton transfer between bicarbonate and the zinc-bound hydroxide, as supported by the dependence of the rate of proton transfer on bicarbonate concentration and on solvent hydrogen isotope effects. This study establishes that a histidine directly hydrogen-bonded to the zinc-bound hydroxide, can adopt the correct distance geometry to support proton transfer 相似文献