首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

4.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

5.
Human 125I-labelled VLDL interacts with rat adipocytes in vitro, with properties typical of a ligand-receptor interaction. This VLDL-receptor interaction is modulated by hormones which are known to change cyclic AMP levels. Norepinephrine and isoproterenol, both of which elevate cyclic AMP, increase the binding of VLDL to adipocytes. Dibutyryl-cyclic AMP, a derivative of cyclic AMP, also increases the VLDL binding to adipocytes. Insulin reverses the catecholamine-induced increase in VLDL binding. This parallels insulin's effect on the catecholamine-induced changes in cyclic AMP. Direct addition of cyclic AMP itself increases VLDL binding to adipocyte membranes, a system in which no lipolysis or new protein synthesis occurs. Based on the competition between unlabelled VLDL and 125I-labelled VLDL, we conclude that catecholamines act on adipocytes, and cyclic AMP on membrane fractions, by increasing their capacity rather than their affinity to bind VLDL.  相似文献   

6.
Porcine kidney cortex was utilized for the preparation of plasma-membrane-enriched and soluble cytoplasmic (cytosol) fractions for the purpose of examining the relative properties of cyclic [3H]AMP receptor and cyclic AMP-dependent protein kinase activities of these preparations. The affinity, specificity and reversibility of cyclic [3H]AMP interaction with renal membrane and cytosol binding sites were indicative of physiological receptors.Binding sites of cytosol and deoxycholate-solubilized membranes were half-saturated at approx. 50nM and 100 nM cyclic [3H]AMP. Native plasma membranes exhibited multiple binding sites which were not saturated up to 1 mM cyclic [3H]AMP. Modification of the cyclic phosphate configuration or 2′-hydroxyl of the ribose moiety of cyclic AMP produced a marked reduction in the effectiveness of the cyclic AMP analogue as a competitor with cyclic [3H]AMP for renal receptors. The cyclic [3H]AMP interaction with membrane and cytosol fractions was reversible and the rate and extent of dissociation of bound cyclic [3H]AMP was temperature dependent. With the plasma-membrane preparation, dissociation of cyclic [3H]AMP was enhanced by ATP or AMP.Assay of both kidney subcellular fractions for protein kinase activity revealed that cyclic AMP enhanced the phosphorylation of protamine, lysine-rich and arginine-rich histones but not casein. The potency and efficacy of activation of renal membrane and cytosol protein kinase by cyclic AMP analogues such as N6-butyryl-adenosine cyclic 3′,5′-monophosphate or N6,O2-dibutyryl-adenosine cyclic 3′,5′-monophosphate supported the observations on the effectiveness of cyclic AMP analogues as competitors with cyclic [3H]AMP in competitive binding assays.This study suggested that the membrane cyclic [3H]AMP receptors may be closely associated with the membrane-bound catalytic moiety of the cyclic AMP-dependent protein kinase system of porcine kidney.  相似文献   

7.
The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of α-amino [1-14C] isobutyrate or [1-14C] cycloeeucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats affects either parameter. Growth hormone treatment of hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate α-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r = 0.977). Theophylline and prostaglandin E1, which raise cartilage cyclic AMP also increase α-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyrll cyclic AMP and N6, O2′-dibutyryl cyclic AMP increase cartilage α-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.  相似文献   

8.
The induction of aggregative phase functions and the acceleration of the onset of aggregation competence by nanomolar pulses of cyclic AMP can be mimicked by exposing developing cells to a high extracellular concentration of either cyclic AMP or cyclic GMP (5 × 10?4M) during the first 1–2 hr of development. Pulses of cyclic AMP have previously been shown to result in oscillations of intracellular cyclic AMP concentration; we show that high extracellular concentrations of cyclic AMP and cyclic GMP cause intracellular cyclic AMP levels to increase. We describe a mutant, HM11, which has elevated levels of intracellular cyclic AMP from the beginning of development and which begins to accumulate cell-associated phosphodiesterase, an aggregative phase enzyme, within an hour of starvation. Our data suggest that the expression of aggregative phase functions is controlled by an elevation of intracellular cyclic AMP which may be either continuous or periodic.  相似文献   

9.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

10.
Low levels of adenosine 3′,5′-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0–2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3–4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

11.
Nα-Trinitrophenyl glucagon was prepared by reaction with trinitrobenzene sulfonic acid and purified by ion-exchange chromatography. This derivative has essentially no ability to activate adenylate cyclase from rat liver nor to increase the levels of cyclic AMP in isolated hepatocytes nor to stimulate protein kinase activity. This derivative also can act as a glucagon antagonist with regard to cyclic AMP production and can decrease the degree of stimulation of adenylate cyclase caused by glucagon, as well as lowering the glucagon-stimulated elevation of cyclic AMP levels in intact hepatocytes. Nevertheless, this derivative is capable of activating glycogenolysis.in isolated hepatocytes and in augmenting the effect of glucagon on glycogenolysis. This metabolic effect of the glucagon derivative thus appears to occur independent of changes in cyclic AMP levels. These results suggest that glucagon can also activate glycogenolysis by a cyclic AMP-independent process.  相似文献   

12.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-biphosphate at levels of 2t nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-biphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-biphosphate. Thus, the above-described regulation of fructose 2,6-biphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-biphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-biphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-biphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-biphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

13.
Human 125I-labelled VLDL interacts with rat adipocytes in vitro, with properties typical of a ligand-receptor interaction. This VLDL-receptor interaction is modulated by hormones which are known to change cyclic AMP levels. Norepinephrine and isoproterenol, both of which elevate cycle AMP, increase the binding of VLDL to adipocytes. Dibutyryl-cyclic AMP, a derivative of cyclic AMP, also increases the VLDL binding to adipocytes. Insulin reverses the catecholamine-induced increase in VLDL binding. This parallels insulin's effect on the catecholamine-induced changes in cyclic AMP. Direct addition of cyclic AMP itself increases VLDL binding to adipocyte membranes, a system in which no lipolysis of new protein synthesis occurs. Based on the competition between unlabelled VLDL and 125I-labelled VLDL, we conclude that catecholamines act on adipocytes, and cyclic AMP on membrane fractions, by increasing their capacity rather than their affinity to bind VLDL.  相似文献   

14.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

15.
Cyclic AMP content in mouse thymocytes has been measured after incubation either with sera or serum fractions from normal or thymectomized (Tx) mice and pigs or with a synthetic circulating pig thymic factor. Sera from both Tx and normal pigs and mice induced an increase in cyclic AMP in mouse thymocytes, whereas the synthetic pig thymic factor did not. It is concluded that the increase in cyclic AMP in mouse thymocytes should be used with caution for the evaluation of circulating thymic hormone levels.  相似文献   

16.
Rat hemidiaphragms incubated with epinephrine exhibited increases in cyclic AMP content and protein kinase activity which were proportional to the logarithm of the hormone concentration from 0.1–2 μM. The fraction of glycogen synthase made independent of glucose-6-P for activity (%I) decreased concomitantly, but correlated only with epinephrine concentrations up to 0.2 μM. Insulin (0–100 mU/ml) increased glycogen synthase %I in a dose-dependent manner with no change in cyclic AMP concentration. Protein kinase activity increased slightly at the lowest insulin concentration, then decreased slightly as glycogen synthase %I increased. Insulin was without effect when administered with a supramaximal dose of epinephrine. In the presence of submaximal epinephrine, insulin produced a dose-dependent increase in glycogen synthase %I which correlated with a decrease in protein kinase activity, without changing cyclic AMP. Insulin had no effect on the increases in cyclic AMP produced by varying levels of epinephrine. However, the activation of protein kinase activity by endogenous cyclic AMP was inhibited in the presence of insulin. The glycogen synthase %I response to epinephrine also was less sensitive in the presence of insulin. Insulin antagonizes the activation of cyclic AMP-dependent protein kinase by epinephrine without altering cyclic AMP levels.  相似文献   

17.
The influence of cyclic AMP on the metabolism of phosphatidylcholine, the major component of pulmonary surfactant was examined in a cell line (A549) with type 2 pneumonocyte characteristics. It was found that cyclic AMP increased both the total amount of phosphatidylcholine and disaturated phosphatidylcholine as well as the incorporation of [3H]choline into these fractions. The effect was specific for cyclic AMP since 5'-AMP, adenosine, and cyclic GMP did not alter phosphatidylcholine or disaturated phosphatidylcholine levels. Cyclic AMP had no effect on phosphatidylcholine and disaturated phosphatidylcholine metabolism in another non-type 2 human epithelial cell line (MA-160). Since the ability of various cyclic AMP analogs to increase phosphatidylcholine and disaturated phosphatidylcholine levels was correlated with their ability to activate protein kinase, it seems likely that a protein phosphorylation mechanism is involved in controlling phosphatidylcholine metabolism.  相似文献   

18.
Particulate cyclic nucleotide phosphodiesterases of rat kidney display some distinct kinetic and regulatory properties. Only a small portion (5–10%) of the total homogenate low Km cyclic AMP phosphodiesterase activity (measured with concentrations of cyclic AMP less than l μm) is tightly associated with kidney membranes. Cyclic GMP phosphodiesterase activity (measured with 0.25–200 μm cyclic GMP) is readily detectable in these fractionated and washed membranes. Low concentrations of cyclic GMP stimulated the hydrolysis of cyclic AMP (Ka ~- 0.5 μM), an effect not noted in most other membrane systems. High concentrations of cyclic GMP (Ki ~- 450 μM) and cyclic AMP (Ki ~- 150 μM) inhibited the hydrolysis of each other noncompetitively. Solubilization of membrane bound activities by sonication or Sarkosyl L markedly alters enzyme kinetic properties and the responses to cyclic nucleotides and sulfhydryl reagents. Incubation of membrane fractions with dithiothreitol (5 mm) or storage of the membranes at 4 °C results in a change in extrapolated kinetic constants for cyclic AMP hydrolysis and an increase in the rate of denaturation at 45 °C. Our findings raise the possibility that regulation of membrane-bound cyclic nucleotide phosphodiesterase activity involves interactions with cyclic nucleotides themselves, as well as oxidation and reduction of disulfide bonds and membrane-enzyme interactions.  相似文献   

19.
The effect of bovine brain gangliosides on the intrathymocyte levels of cyclic AMP as a potential mediator of ganglioside action has been studied. Commercial tri-, and disialogangliosides, at 2.5 to 5 μM were found to produce a rapid and profound increase (eg., 10 fold within 2 min by trisialoganglioside). When the preparations were purified on Florisil, this effect on cyclic AMP content was lost, but not the immunoinhibitory potency of the ganglioside (as tested on Concanavalin A induced DNA synthesis). The water soluble “ganglioside associated protein” fractions separated from commercial di- and trisialo gangliosides by Florisil chromatography did not alter the cyclic AMP levels of thymocytes. Previous reports of an effect of commercial gnagliosides on the enzymes of cyclic AMP metabolism in nervous tissue should be re-evaluated.  相似文献   

20.
The level of cyclic AMP in various fractions of rat skeletal tissue was measured after in vitro or in vivo administration of parathyroid hormone and calcitonin. Incubations of bone fractions prepared from young (5 weeks of age thyroparathyroidectomized rats revealed that both parathyroid hormone and calcitonin increased the cyclic AMP level in fractions of epiphysis, metaphysis and marrow cells. Cyclic AMP accumulation in incubated perisoteum and diaphysis were induced solely by parathyroid hormone. In in vivo experiments the cyclic AMP level in the tibia of the thyroparathyroidectomized rat was increased by infusion of either parathyroid hormone or calcitonin, and the simultaneous administration of each maximally effective dose of the two hormones exhibited an additive effect. Within 2 min, parathyroid hormone infusion caused an elevation of cyclic AMP content in periosteum and metaphysis. Rapid increase of cyclic AMP in the metaphysis was also induced by calcitonin, and the effect of the two hormones on cyclic AMP accumulation in this fraction was additive. Small but significant increase of cyclic AMP in the diaphysis was detected at 5 min after the administration of parathyroid hormone. Calcitonin infusion did not show any consistent effects on periosteum and diaphysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号