首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure.  相似文献   

2.
Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing.   总被引:23,自引:0,他引:23  
A D Elbein 《FASEB journal》1991,5(15):3055-3063
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms.  相似文献   

3.
Analysis of the pronase-derived glycopeptides of isolated mumps virus glycoproteins revealed the presence of both complex and high-mannose-type oligosaccharides on the HN and F1 glycoproteins, whereas only high-mannose-type glycopeptides were detected on F2. Endoglycosidase F, a newly described glycosidase that cleaves N-linked high mannose as well as complex oligosaccharides, appeared to completely cleave the oligosaccharides linked to HN and F2, whereas F1 was resistant to the enzyme. Two distinct cleavage products of F2 were observed, suggesting the presence of two oligosaccharide side chains. Tunicamycin was found to reduce the infectious virus yield and inhibit mumps virus particle formation. The two glycoproteins, HN and F, were not found in the presence of the glycosylation inhibitor. However, two new polypeptides were detected, with molecular weights of 63,000 (HNT) and 53,000 (FT), respectively, which may represent nonglycosylated forms of the glycoproteins. Synthesis of the nonglycosylated virus-coded proteins (L, NP, P, M, pI, and pII) was not affected by tunicamycin. The formation of HN oligomers and the proteolytic cleavage of the F protein were found to occur with the same kinetics. Analysis of the time course of appearance of mumps virus glycoproteins on the cell surface suggested that dimerization of HN and cleavage of F occur immediately after their exposure on the plasma membrane.  相似文献   

4.
The initial plasma clearance and organ distribution of alpha 1-acid glycoprotein and alpha 2-macroglobulin carrying different types of oligosaccharide, side chains was studied in rats. The differently glycosylated proteins were synthesized by rat hepatocytes in culture in the presence of tunicamycin (unglycosylated form), swainsonine (hybrid type), or 1-deoxymannojirimycin (high-mannose type). Deglycosylated glycoproteins (Asn-GlcNAc) were obtained by endoglucosaminidase H treatment of high-mannose-type glycoproteins. Ten minutes after intravenous injection 3% of complex type, 26% of hybrid type, 84% of high-mannose type. 64% of unglycosylated and 80% of deglycosylated alpha 1-acid glycoprotein disappeared from the plasma. The respective values for alpha 2-macroglobulin were 26%, 42%, 59% and 67%. When the clearance of total hepatic secretory proteins was examined, major differences between glycosylated and unglycosylated (glyco)proteins were found, particularly in the case of low-molecular-mass polypeptides. Whereas complex-type alpha 1-acid glycoprotein and alpha 2-macroglobulin showed no accumulation in various organs, hybrid-type alpha 1-acid glycoprotein and alpha 2-macroglobulin were present in spleen and liver. High-mannose-type alpha 1-acid glycoprotein and alpha 2-macroglobulin also accumulated mainly in spleen and liver. Spleen had the highest specific activity; liver, due to its larger organ mass, represented the major organ for the uptake of high-mannose-type glycoproteins. Competition experiments with mannan and GlcNAc-bovine-serum-albumin showed a mannose/GlcNAc receptor-mediated removal. Whereas unglycosylated alpha 1-acid glycoprotein was taken up by the kidney, unglycosylated alpha 2-macroglobulin was found in the spleen. Deglycosylated glycoproteins (Asn-GlcNAc) were removed from the plasma via two different mechanisms: firstly, clearance by the kidney similar to the unglycosylated glycoproteins; secondly, clearance by a mannose/GlcNAc receptor-mediated uptake mainly into the spleen. We conclude that N-linked oligosaccharide side chains are important for the plasma survival of hepatic secretory glycoproteins and that unphysiologically glycosylated forms are cleared by different mechanisms.  相似文献   

5.
The major glycoprotein g2 was purified from three strains of Rous sarcoma virus, representing subgroups A, B, and C. Carbohydrate analysis showed that glucosamine, mannose, galactose, fucose and sialic acid constitute 40% of the weight of the subgroup A glycoprotein and 15% of the subgroup B and C glycoproteins. The molar ratios of sugars were very similar and amino acid compositions were similar but not identical for the three glycoproteins. Glycosidase digestions of subgroup A and C glycoproteins suggested the presence of two types of oligosaccharide chains, the complex serum type, with terminal sequences sialic acidα-Galβ-GlcNAcβ- and the high mannose type with terminal α-linked mannosyl residues. After removal of 70% of the carbohydrate by glycosidases, subgroup A glycoprotein contained only glucosamine and mannose, in the molar ratio 2.0:1.3. The sequence of sugar release was consistent with oligosaccharide structures such as those which have been described for other glycoproteins. The plant lectins concanavalin A and wheat germ agglutinin were shown to interact strongly with the g2 glycoprotein from viruses of all three subgroups.  相似文献   

6.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

7.
Phytohemagglutinin, the lectin of the common bean Phaseolus vulgaris, has a high mannose and a modified (fucosylated) oligosaccharide on each polypeptide. Fractionation by high performance liquid chromatography of tryptic digests of [3H]fucose or [3H]glucosamine labeled phytohemagglutinin, followed by amino acid sequencing of the isolated glycopeptides, shows that the high mannose oligosaccharide is attached to Asn12 and the modified oligosaccharide to Asn60 of the protein. In animal glycoproteins, high mannose chains are rarely found at the N-terminal side of complex chains.  相似文献   

8.
Carbohydrate structures of HVJ (Sendai virus) glycoproteins   总被引:7,自引:0,他引:7  
The carbohydrate structures of two membrane glycoproteins (HANA protein and F protein) of HVJ have been determined on materials purified from virions grown in the allantoic sac of embryonated chicken eggs. Both glycoproteins contain fucose, mannose, galactose, and glucosamine but not galactosamine, indicating that their sugar chains are exclusively of the asparagine-linked type. The radioactive oligosaccharide fractions obtained from the two glycoproteins by hydrazinolysis followed by NaB[3H]4 reduction gave quite distinct fractionation patterns after paper electrophoresis. More than 75% of the oligosaccharides from F protein were acidic and separated into at least four components by paper electrophoresis. Only 18% of the oligosaccharide from HANA protein was an acidic single component. These acidic oligosaccharides could not be converted to neutral oligosaccharides by sialidase digestion. Structural studies of the neutral oligosaccharide fractions from HANA and F proteins revealed that both of them are mixtures of a series of high mannose type oligosaccharides and of complex type oligosaccharides with Gal beta 1 leads to (Fuc alpha 1 leads to 3) GlcNAc group in their outer chain moieties.  相似文献   

9.
The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.  相似文献   

10.
BHK cells infected with vesicular stomatitis virus serotype Indiana generate intracellularly two different types of glycoproteins: the authentic membrane-integrated G protein of virions and a smaller soluble Gs protein lacking the transmembrane and cytoplasmic domains which is secreted into the growth medium. A Gs1 protein species which is formed during or shortly after translation in the endoplasmic reticulum lumen is modified in the same way as the G1 protein by endoglycosidase H-sensitive oligosaccharides of the high-mannose type. Both G1 and Gs1 are almost simultaneously transported, trimmed, and processed into G2 and Gs2 species which possess carbohydrate side chains of the complex type, making both glycoproteins resistant to endoglycosidase H cleavage. Secretion of Gs2 protein into the growth medium and arrival of G2 protein on the cell surface occur concomitantly. Membrane-integrated G protein and the soluble Gs protein molecules oligomerize intracellularly into heterotrimers which can be immunoprecipitated after chemical cross-linking. Gs protein seems to contain sufficient structural information for the formation of heterotrimers which are efficiently transported to the cell surface. Heterotrimer formation between G and Gs proteins explains the rapid secretion of Gs molecules.  相似文献   

11.
A method was developed for obtaining detailed oligosaccharide profiles from [2-3H]mannose- or [6-3H]fucose-labeled cellular glycoproteins. The oligosaccharides were segregated first according to class, using endo-beta-N-acetylglucosaminidase H (Endo H) to release the high mannose species, and then with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F), which provided a complete array of complex oligosaccharide chains. The high mannose and complex oligosaccharides were fractionated subsequently according to net negative charge on QAE-Sephadex. High resolution gel filtration on TSK HW-40(S) resolved the neutral high mannose population into species of the type Man9-5 N-acetylglucosamine. Desialylation of the complex chains with neuraminidase allowed resolution of these oligosaccharides into their corresponding asialo bi-, tri-, and tetraantennary species. Fibroblasts from normal and cystic fibrosis cells were analyzed for differences in their glycosylation patterns using these techniques. Over 95% of the [2-3H]mannose-labeled glycoproteins were susceptible to the combined glycosidase digestions, but no difference in either the high mannose or complex oligosaccharides were observed. Nonetheless, the methodology developed in this study provides an important new approach for investigating oligosaccharides of different cell types and variants of the same type. Metabolic changes induced in cellular glycoproteins, as illustrated by use of the processing inhibitor swainsonine, demonstrated the versatility of this procedure for investigating questions relating to glycoprotein structure and enzyme specificity. Thus, by employing a variation of this method, it was possible to confirm the location of fucose in the core of PNGase F-released hybrid oligosaccharides by the subsequent release with Endo H of the disaccharide, fucosyl-N-acetylglucosamine.  相似文献   

12.
360-MHz proton nuclear magnetic resonance spectra were recorded of 10 sialyl-oligosaccharides isolated from urine of sialidosis patients. Their structures are related to the complex asparagine-linked glycan chains of glycoproteins. By correlation of these spectra and comparison with spectra of reference glycopeptides and sialyl-lactose isomers it was possible to assign all signals belonging to anomeric, mannose H-2, sialic acid H-3 and N-acetyl protons. The number of the consituting monosaccharide residues of the oligomers can be obtained by integration of the above-mentioned signals. The chemical shifts of the anomeric and mannose H-2 protons give information about the type of glycan structure (mono-, bi-, triantennary) and the presence of terminal sialic acid at each of the antennas. The chemical shifts of sialic acid H-3 protons are typical for sialic acid residues in 2 leads to 3 or 2 leads to 6 linkage to galactose.  相似文献   

13.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

14.
Based on subcellular fractionation data, the following maturation pathways were proposed for the Newcastle disease virus glycoproteins. During or shortly after synthesis in rough endoplasmic reticulum, hemagglutinin-neuraminidase (HN) and fusion (F0) glycoproteins underwent dolichol pyrophosphate-mediated glycosylation, and HN assumed a partially trypsin-resistant conformation. HN began to associate into disulfide-linked dimers in rough endoplasmic reticulum, and at least one of its oligosaccharide side chains was processed to a complex form en route to the cell surface. During migration in intracellular membranes, F0 was proteolytically cleaved to F1.2. Neither HN nor F1,2 required oligosaccharide side chains for migration to plasma membranes, and cleavage of F0 also occurred without glycosylation. Virion- and plasma membrane-associated HN contained both complex and high-mannose oligosaccharide chains on the same molecule, and F1,2 contained at least high-mannose forms. Several of the properties of HN were notable for a viral glycoprotein. The oligosaccharide side chains of HN were modified very slowly in chick cells, whereas those of the G glycoprotein of vesicular stomatitis virus were rapidly processed to a complex form. Therefore, their different rates of migration and carbohydrate processing were intrinsic properties of these glycoproteins. Consistent with its slow maturation, the HN glycopolypeptide accumulated to high levels in intracellular membranes as well as in plasma membranes. Intracellular HN contained immature oligosaccharide side chains, suggesting that it accumulated in the pre-Golgi/Golgi segment of the maturation pathway. The major site of accumulation of mature HN with neuraminidase activity was the plasma membrane.  相似文献   

15.
In the preceding paper (Hearing, J., E. Hunter, L. Rodgers, M.-J. Gething, and J. Sambrook. 1989. J. Cell Biol. 108:339-353) we described the isolation and initial characterization of seven Chinese hamster ovary cell lines that are temperature conditional for the cell-surface expression of influenza virus hemagglutinin (HA) and other integral membrane glycoproteins. Two of these cell lines appeared to be defective for the synthesis and/or addition of mannose-rich oligosaccharide chains to nascent glycoproteins. In this paper we show that at both 32 and 39 degrees C in two mutant cell lines accumulate a truncated version, Man5GlcNAc2, of the normal lipid-linked precursor oligosaccharide, Glc3Man9GlcNAc2. This is possibly due to a defect in the synthesis of dolichol phosphate because in vitro assays indicate that the mutant cells are not deficient in mannosylphosphoryldolichol synthase at either temperature. A mixture of truncated and complete oligosaccharide chains was transferred to newly synthesized glycoproteins at both the permissive and restrictive temperatures. Both mutant cell lines exhibited altered sensitivity to cytotoxic plant lectins when grown at 32 degrees C, indicating that cellular glycoproteins bearing abnormal oligosaccharide chains were transported to the cell surface at the permissive temperature. Although glycosylation was defective at both 32 and 39 degrees C, the cell lines were temperature conditional for growth, suggesting that cellular glycoproteins were adversely affected by the glycosylation defect at the elevated temperature. The temperature-conditional expression of HA on the cell surface was shown to be due to impairment at 39 degrees C of the folding, trimerization, and stability of HA molecules containing truncated oligosaccharide chains.  相似文献   

16.
Glucocorticoid hormone is required for complete posttranslational processing of the glycosylated mouse mammary tumor virus envelope precursor, Pr74env in the murine T-lymphosarcoma cell line, W7MG1. Metabolic labeling studies with [35S]methionine, [3H]galactose, and [3H]mannose, combined with enzymatic digestion analyses with a variety of endoglycosidases, demonstrated that both proteolytic processing and N-linked oligosaccharide maturation depended, either directly or indirectly, on glucocorticoid action. Pr74 is found in both control and hormone-treated cells. In both cases Pr74 molecules carry high mannose and/or hybrid, but not complex, oligosaccharide chains with very little or no sialic acid. When cells are grown with glucocorticoid, Pr74 is converted to gp52 and gp33 with greatly increased efficiency, and these mature glycoproteins carry complex oligosaccharides containing sialic acid. No O-linked carbohydrate was detected on any of these species. According to this evidence, the glucocorticoid-regulated step in this pathway must occur at or before the final mannose trimming step in the Golgi that is required for formation of complex carbohydrate chains.  相似文献   

17.
As part of their posttranslational maturation process, newly synthesized glycoproteins that contain N-linked oligosaccharide side chains pass through the Golgi apparatus, where some of their oligosaccharides become modified by carbohydrate processing reactions. In this paper, we report the presence of Golgi-localized enzymes in plant cells (Phaseolus vulgaris cotyledons) that transfer GlcNAc, fucosyl, and xylosyl residues to the oligosaccharide side chains of glycoproteins. All three enzyme activities are involved in the transformation of high mannose side chains into complex glycans. As judged by acceptor specificity studies, at least two GlcNAc residues can be added to the nonreducing side of high mannose oligosaccharides, which have been trimmed by α-mannosidase(s). A Man5(GlcNAc)2-peptide serves as the acceptor for the first GlcNAc added. The second GlcNAc can be added only after the prior removal of two additional mannose residues, ultimately yielding (GlcNAc)2Man3(GlcNAc)2-peptide. Fucosyltransferase can transfer fucose to GlcNAcMan5(GlcNAc)2Asn, GlcNAcMan3(GlcNAc)2Asn, and (GlcNAc)2Man3(GlcNAc)2Asn; xylosyltransferase exhibits significant activity toward the latter two substrates only. These results suggest an overlapping sequence of oligosaccharide modification in the Golgi apparatus that, in regard to GlcNAc and fucose additions, is analogous to pathways of oligosaccharide processing reported for animal cells. To our knowledge, this is the first report characterizing a xylosyltransferase involved in N-linked oligosaccharide modification, an activity that is apparently absent in most animal cells.  相似文献   

18.
Glycoproteins present in the soluble and organelle fractions of developing bean (Phaseolus vulgaris) cotyledons were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, affinoblotting, fractionation on immobilized concanavalin A (ConA), and digestion of the oligosaccharide side chains with specific glycosidases before and after protein denaturation. These studies led to the following observations. (a) Bean cotyledons contain a large variety of glycoproteins that bind to ConA. Binding to ConA can be eliminated by prior digestion of denatured proteins with α-mannosidase or endoglycosidase H, indicating that binding to ConA is mediated by high-mannose oligosaccharide side chains. (b) Bean cotyledons contain a large variety of fucosylated glycoproteins which bind to ConA. Because fucose-containing oligosaccharide side chains do not bind to ConA, such proteins must have both high-mannose and modified oligosaccharides. (c) For all the glycoproteins examined except one, the high-mannose oligosaccharides on the undenatured proteins are accessible to ConA and partially accessible to jack bean α-mannosidase. (d) Treatment of the native proteins with α-mannosidase removes only 1 or 2 mannose residues from the high-mannose oligosaccharides. Similar treatments of sodium dodecyl sulfate-denatured or pronase-digested glycoproteins removes all α-mannose residues. The results support the following conclusions: certain side chains remain unmodified as high-mannose oligosaccharides even though the proteins to which they are attached pass through the Golgi apparatus, where other oligosaccharide chains are modified. The chains remain unmodified because they are not accessible to processing enzymes such as the Golgilocalized α-mannosidase.  相似文献   

19.
Fucus vesiculosus agglutinin has been purified to homogeneity by conventional chromatographic procedures and characterized as a mucopolysaccharide with 90% carbohydrate content. Estimated molecular weight is about 2 X 10(6) daltons. It has no sub-unit structure and its isoelectric point is 3.2. It contains 1.23% S, 0.24% Ca and 0.06% P. Agglutinin mediated sheep red blood cell agglutination was inhibited only by glycoproteins with complex lateral oligosaccharide chains resembling some of the oligosaccharide chains found in the erythrocyte membrane glycoproteins. Metaperiodate treatment of the sheep red cells rendered them non-agglutinable. Sequential degradation of the oligosaccharide chains with glycosidases suggests that inner mannose residues are implicated in the receptor binding-sites for the agglutinin. Consequently we think that this agglutinin can be a lectin or a lectin-like molecule with complex saccharide specificity.  相似文献   

20.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号