首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.  相似文献   

2.
The identification of a region of sequence variability among individual isolates of Bacillus anthracis as well as the two closely related species, Bacillus cereus and Bacillus mycoides, has made a sequence-based approach for the rapid differentiation among members of this group possible. We have identified this region of sequence divergence by comparison of arbitrarily primed (AP)-PCR "fingerprints" generated by an M13 bacteriophage-derived primer and sequencing the respective forms of the only polymorphic fragment observed. The 1,480-bp fragment derived from genomic DNA of the Sterne strain of B. anthracis contained four consecutive repeats of CAATATCAACAA. The same fragment from the Vollum strain was identical except that two of these repeats were deleted. The Ames strain of B. anthracis differed from the Sterne strain by a single-nucleotide deletion. More than 150 nucleotide differences separated B. cereus and B. mycoides from B. anthracis in pairwise comparisons. The nucleotide sequence of the variable fragment from each species contained one complete open reading frame (ORF) (designated vrrA, for variable region with repetitive sequence), encoding a potential 30-kDa protein located between the carboxy terminus of an upstream ORF (designated orf1) and the amino terminus of a downstream ORF (designated lytB). The sequence variation was primarily in vrrA, which was glutamine- and proline-rich (30% of total) and contained repetitive regions. A large proportion of the nucleotide substitutions between species were synonymous. vrrA has 35% identity with the microfilarial sheath protein shp2 of the parasitic worm Litomosoides carinii.  相似文献   

3.

Background  

Bacillus anthracis and Bacillus cereus can usually be distinguished by standard microbiological methods (e.g., motility, hemolysis, penicillin susceptibility and susceptibility to gamma phage) and PCR. However, we have identified 23 Bacillus spp. isolates that gave discrepant results when assayed by standard microbiological methods and PCR. We used multiple-locus variable-number tandem repeat analysis (MLVA), multiple-locus sequence typing (MLST), and phenotypic analysis to characterize these isolates, determine if they cluster phylogenetically and establish whether standard microbiological identification or PCR were associated with false positive/negative results.  相似文献   

4.
5.
There have been many efforts to develop Bacillus anthracis detection assays, but the problem of false-positive results has often been encountered. Therefore, to validate an assay for B. anthracis detection, it is critical to examine its specificity with the most closely related Bacillus isolates that are available. To define the most closely related Bacillus isolates to B. anthracis in our Bacillus collections, we analyzed by multilocus sequence typing (MLST) the phylogeny of 77 closely related Bacillus isolates selected from 264 Bacillus isolates. The selection includes all the Bacillus isolates that have been shown in our previous studies to produce false-positive results by some anthrax-detection assays. The MLST phylogenetic analyses revealed that 27 of the non-B. anthracis isolates clustered within the B. anthracis clade, and four of them (three sequence types, STs) had the highest degree of genetic relatedness with B. anthracis, 18 (11 STs) had the second highest, and five (five STs) had the third highest. We anticipate that the inclusion of the 19 ST isolates when analyzing B. anthracis detection assays will prove to be useful for screening for their specificity to detect B. anthracis.  相似文献   

6.
To facilitate the analysis of genetic determinants carried by large resident plasmids of Bacillus anthracis, a mating system was developed which promotes plasmid transfer among strains of B. anthracis, B. cereus, and B. thuringiensis. Transfer of the selectable tetracycline resistance plasmid pBC16 and other plasmids from B. thuringiensis to B. anthracis and B. cereus recipients occurred during mixed incubation in broth. Two plasmids, pXO11 and pXO12, found in B. thuringiensis were responsible for plasmid mobilization. B. anthracis and B. cereus transcipients inheriting either pXO11 or pXO12 were, in turn, effective donors. Transcipients harboring pXO12 were more efficient donors than those harboring pXO11; transfer frequencies ranged from 10(-4) to 10(-1) and from 10(-8) to 10(-5), respectively. Cell-to-cell contact was necessary for plasmid transfer, and the addition of DNase had no effect. The high frequencies of transfer, along with the fact that cell-free filtrates of donor cultures were ineffective, suggested that transfer was not phage mediated. B. anthracis and B. cereus transcipients which inherited pXO12 also acquired the ability to produce parasporal crystals (Cry+) resembling those produced by B. thuringiensis, indicating that pXO12 carries a gene(s) involved in crystal formation. Transcipients which inherited pXO11 were Cry-. This mating system provides an efficient method for interspecies transfer of a large range of Bacillus plasmids by a conjugation-like process.  相似文献   

7.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

8.
Little is known about the genetic and phenotypic diversity of Gram-positive denitrifying bacteria. We compared the production of gaseous denitrification products for 14 closely related Bacillus soil isolates at pH 6 and 7 during 48-h batch incubations using a robotic gas-sampling apparatus. Primers targeting the nosZ gene encoding the nitrous oxide reductase were designed to confirm the presence of this gene in the isolates. The variation in the production of gaseous nitrogen products was compared with the genetic variation based on 16S rRNA gene sequences, genomic fingerprinting and nosZ sequences. The nosZ gene was detected in all isolates and all produced N(2) as the dominant end product at pH 7. Production of gaseous nitrogen products was more variable at pH 6, with different levels of NO and N(2) O production among the isolates, although minimal variation was observed among the 16S rRNA and nosZ gene sequences. One isolate was more divergent from the others based on genomic fingerprinting, and had two different nosZ gene copies, which coincided with the highest production of N(2) at pH 7 and the lack of intermediates at pH 6. Overall, our analysis suggests that genetic variation plays a role in the variation in N(2) O and N(2) production, but the variation in activity caused by acidification can be substantially greater than genotypic variation among closely related Bacillus.  相似文献   

9.
Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml?1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml?1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant.  相似文献   

10.
【目的】2株炭疽芽胞杆菌(Bacillus anthracis)17003-14和17003-32的多位点序列分型(Multilocussequence typing,MLST)研究。【方法】选取B.anthracis基因组7个常见管家基因位点glpF、gmk、ilvD、pta、pur、pycA和tpi进行PCR扩增、测序,与MLST数据库中的等位基因序列进行比对,确定菌株的序列型(sequence type,ST)。【结果】B.anthracis 17003-14和17003-32的等位基因编号分别为113、31、1、43、1、53、7和113、31、1、43、1、53、37,比对结果显示这2株细菌的等位基因编号组合未见报道。【结论】17003-14和17003-32为新ST菌株,已被MLST数据库确认,注册号(pubMLST id)分别为id-1053和id-1054。  相似文献   

11.
Recent outbreaks of cryptosporidiosis from contaminated water supplies have led to a need for the detection of Cryptosporidium oocysts from various hosts and contaminating sources. The presence of nonpathogenic species or strains of Cryptosporidium is important for diagnostic purposes as there is a potential for false-positive detection of pathogenic parasites. The present review focuses on phenotypic differences and recent advances in genotypic analyses of the genus Cryptosporidium with an emphasis on detecting various isolates and identifying differences in Cryptosporidium parvum and other species in this genus. The information currently available demonstrates important patterns in DNA sequences of Cryptosporidium, and our understanding of macro- and microevolutionary patterns has increased in recent years. However, current knowledge of Cryptosporidium genetic diversity is far from complete, and the large amount of both phenotypic and genotypic data has led to problems in our understanding of the systematics of this genus. Journal of Industrial Microbiology & Biotechnology (2001) 26, 95–106. Received 18 March 2000/ Accepted in revised form 13 August 2000  相似文献   

12.
AIMS: The use of randomly amplified polymorphic DNA (RAPD)-PCR fingerprinting and plasmid profiles to determine at the strain level, the similarity of Lactococcus lactis isolates obtained during sampling of traditional cheeses and to verify its correspondence to the selected phenotypic characteristics. METHODS AND RESULTS: A total of 45 L. lactis isolates were genotypically analysed by RAPD-PCR fingerprinting and plasmid patterns. Phenotypic traits used to compare strains were proteolytic, acidifying, aminotransferase (aromatic and branched chain aminotransferase) and alpha-ketoisovalerate decarboxylase (Kivd) activities. The results show that 23 isolates could be grouped in clusters that exhibited 100% identity in both their RAPD and plasmid patterns, indicating the probable isolation of dominant strains during the cheese sampling process. However, there were phenotypic differences between isolates within the same cluster that included the loss of relevant technological properties such as proteinase activity and acidifying capacity or high variation in their amino acid converting enzyme activities. Likewise, the analysis of a specific attribute, Kivd activity, indicated that 7 of 15 isolates showed no detectable activity despite the presence of the encoding (kivd) gene. CONCLUSION: Phenotypic differences found between genotypically similar strains of L. lactis strains could be linked to differences in enzymatic expression. SIGNIFICANCE AND IMPACT OF THE STUDY: Phenotypic analysis of L. lactis isolates should be considered when selecting strains with new cheese flavour forming capabilities.  相似文献   

13.
Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming rod, with colonies exhibiting a unique ground-glass appearance, and lacking hemolysis and motility. In addition to these phenotypes, several others traits are characteristic of B. anthracis such as susceptibility to gamma phage, the presence of two virulence plasmids (pX01 and pX02), and specific cell wall and capsular antigens that are commonly detected by direct fluorescent-antibody assays. We report on the identification and characterization of 14 Bacillus megaterium and four Bacillus sp. clinical isolates that are nonhemolytic, nonmotile, and produce a capsule antigenically similar to B. anthracis. This work furthers our understanding of Bacillus diversity and the limitations of the assays and phenotypes that are used to differentiate species in this genus. Further work is necessary to understand whether these strains are opportunistic pathogens or just contaminates.  相似文献   

14.
AIMS: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. METHODS AND RESULTS: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0.81 +/- 0.08 microm and 0.86 +/- 0.08 microm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1.26 +/- 0.13 microm or shorter, and another group of strains with mean spore lengths between 1.49 and 1.67 microm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. CONCLUSIONS: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent.  相似文献   

15.
The frequency of phenotypic expression of the herpes simplex virus type 1 tk and Escherichia coli gpt genes was compared with the frequency of genotypic transformation after calcium phosphate-mediated DNA transfection of a number of tk- and hprt- cell lines. In three of the five lines tested, the frequency of phenotypic expression was at most 10-fold higher than that of genotypic transformation as indicated by frequency of HAT resistance. The remaining two lines showed phenotypic responses which were 50- to 100-fold greater than the genotypic responses. The data indicate that the efficiency of DNA-mediated transformation with some cell lines can be limited by events after the uptake and expression of transfected DNA.  相似文献   

16.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

17.
Bacillus cereus strains that are genetically closely related to B. anthracis can display anthrax-like virulence traits (A. R. Hoffmaster et al., Proc. Natl. Acad. Sci. USA 101:8449-8454, 2004). Hence, approaches that rapidly identify these "near neighbors" are of great interest for the study of B. anthracis virulence mechanisms, as well as to prevent the use of such strains for B. anthracis-based bioweapon development. Here, a strategy is proposed for the identification of near neighbors of B. anthracis based on single nucleotide polymorphisms (SNP) in the 16S-23S rRNA intergenic spacer (ITS) containing tRNA genes, characteristic of B. anthracis. By using restriction site insertion-PCR (RSI-PCR) the presence of two SNP typical of B. anthracis was screened in 126 B. cereus group strains of different origin. Two B. cereus strains and one B. thuringiensis strain showed RSI-PCR profiles identical to that of B. anthracis. The sequencing of the entire ITS containing tRNA genes revealed two of the strains to be identical to B. anthracis. The strict relationship with B. anthracis was confirmed by multilocus sequence typing (MLST) of four other independent loci: cerA, plcR, AC-390, and SG-749. The relationship to B. anthracis of the three strains described by MLST was comparable and even higher to that of four B. cereus strains associated with periodontitis in humans and previously reported as the closest known strains to B. anthracis. SNP in ITS containing tRNA genes combined with RSI-PCR provide a very efficient tool for the identification of strains closely related to B. anthracis.  相似文献   

18.
Classification and differentiation of Bacillus anthracis isolates by genetic markers play an important role in anthrax research. We used a PCR based method--Random Amplification of Polymorphic DNA (RAPD)--to identify genetic markers in B. anthracis strains. Twenty-five differential genetic markers were identified which divided the strains into five different groups. Three selected RAPD-markers were cloned and sequenced. The five RAPD-derived genotypes could be defined by integration of these three markers. This system offers a simple non-expensive method to classify B. anthracis strains in laboratories involved in the research of this bacterium.  相似文献   

19.
Klebsiella pneumoniae 287-w carries three small narrow host range (NHR) plasmids (pIGMS31, pIGMS32, and pIGRK), which could be maintained in several closely related species of Gammaproteobacteria, but not in Alphaproteobacteria. The plasmids contain different mobilization systems (MOB), whose activity in Escherichia coli was demonstrated in the presence of the helper transfer system originating from plasmid RK2. The MOBs of pIGMS31 and pIGMS32 are highly conserved in many bacterial plasmids (members of the MOB family), while the predicted MOB of pIGRK has a unique structure, encoding a protein similar to phage-related integrases. The MOBs of pIGMS31 and pIGMS32 enabled the transfer of heterologous replicons from E. coli into both gammaproteobacterial and alphaproteobacterial hosts, which suggests that these NHR plasmids contain broad host range MOB systems. Such plasmids therefore represent efficient carrier molecules, which may act as natural suicide vectors promoting the spread of diverse genetic information (including other types of mobile elements, e.g. resistance transposons) among evolutionarily distinct bacterial species. Thus, mobilizable NHR plasmids may play a much more important role in horizontal gene transfer than previously thought.  相似文献   

20.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号