首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Palaeoworld》2021,30(4):643-648
Epipunctae are microscopic perforations that do not penetrate the shell but are confined to the outer layers of the shell. They have been known previously only in the orthidine family Plaesiomyidae. The striated walls of epipunctae are considered unique to brachiopods and thus of significance for the study of stem-group brachiopod. In this study, we report the first occurrence of epipunctae in a non-plaesiomyid brachiopod based on a well-preserved external mould of Cathaysiorthis yushanensis from the lower Silurian Shiyang Formation of Jiangxi, southeastern China. The species belongs to the Family Cathaysiorthidae which differs from the Family Plaesiomyidae in many aspects especially in dorsal internal structures. The new data imply that epipunctae may be more widespread in orthide brachiopods than previously thought, strengthening the notion that this is a plesiomorphic character of the brachiopod shell. The discovery of epipunctae, however, depends on excellent preservation of the outer surface of the shells as well as careful cleaning and observation.  相似文献   

2.
AN EARLY CAMBRIAN ORGANOPHOSPHATIC BRACHIOPOD WITH CALCITIC GRANULES   总被引:1,自引:1,他引:0  
UWE BALTHASAR 《Palaeontology》2007,50(6):1319-1325
Abstract:  The linguliform brachiopod Eoobolus from the Early Cambrian Mural Formation (Jasper National Park, Canadian Rocky Mountains) exhibits various calcitic features in its otherwise apatitic shell. It is argued here that the decomposition of the organic matter within the shell led to a microenvironment similar to those resulting in the phosphatization of soft tissues. This diagenetic regime encouraged the initial precipitation of apatite cements followed by calcite cements. By fully coating primary structures early apatite cements separate primary structures from the later precipitation of calcite cement. Round calcareous grains, about 3  µ m in size, that occur in the centre of apatite botryoids must therefore represent original components of the shell. The equivalent pits of such calcareous granules are seen in the larval shells of many Palaeozoic linguliform brachiopods. This suggests that mixed organophosphatic-calcareous shells were relatively common at that time but that they have been overlooked owing to the obliteration of original calcareous structures by traditional acid preparation methods for the extraction of phosphatic fossils. The Eoobolus shell structure is intermediate between purely organophosphatic and calcitic shells. Although one such genus is not sufficient to reconstruct the ancestral composition of the brachiopod shell, it provides a means of recognizing other transitional forms that are needed to understand fully the shift in shell mineralogy.  相似文献   

3.
While it is well established that the shapes and sizes of shells are strongly phylogenetically controlled, little is known about the phylogenetic constraints on shell thickness. Yet, shell thickness is likely to be sensitive to environmental fluctuations and has the potential to illuminate environmental perturbations through deep time. Here we systematically quantify the thickness of the anterior brachiopod shell which protects the filtration chamber and is thus considered functionally homologous across higher taxa of brachiopods. Our data come from 66 genera and 10 different orders and shows well-defined upper and lower boundaries of anterior shell thickness. For Ordovician and Silurian brachiopods we find significant order-level differences and a trend of increasing shell thickness with water depth. Modern (Cenozoic) brachiopods, by comparison, fall into the lower half of observed shell thicknesses. Among Ordovician–Silurian brachiopods, older stocks commonly have thicker shells, and thick-shelled taxa contributed more prominently to the Great Ordovician Biodiversification but suffered more severely during the Late Ordovician Mass Extinction. Our data highlight a significant reduction in maximum and minimum shell thickness following the Late Ordovician mass extinction. This points towards stronger selection pressure for energy-efficient shell secretion during times of crisis.  相似文献   

4.

The frequency of epizoans (cornulitids, inarticulate brachiopods, bryozoans, solitary and colonial rugosan corals) on over 8000 specimens of articulate brachiopods (four strophomenids, five orthids, one rhynchonellid) was calculated for four stratigraphic horizons in the Dillsboro Formation of southeastern Indiana. Frequency of shells encrusted correlates significantly with the surface area of the valves. Punctae in brachiopod shells (Onniella meeki) may have deterred larval settlement of epizoans. Coarse ribbing on articulates deterred encrustation by the inarticulate brachiopod. The horn coral shows a preference for attachment to the anterior of Hiscobeccus capax. Bryozoans show a preference for the incurrent lateral margins of inferred living hosts, suggesting rheotropic behavior by settling larvae. Inarticulate brachiopods are concentrated around the sloping commissure of the brachial valve of strophomenids, suggesting geotropic behavior and/or selective survival of settling larvae. Inarticulates deterred overgrowth by bryozoans. High frequencies of encrustations of the medial region of pedicle valves of orthids and strophomenids probably reflect post‐mortem encrustations. Alternating intervals of slow sediment accumulation punctuated by tropical storms and rapid shell burial may account for the high frequency of shells with either their entire surface veneered or only a very small area encrusted by bryozoans.  相似文献   

5.
Ackerly. S. C. 1992 07 15: Morphogenetic regulation in the shells of bivalves and brachiopods: evidence from the geometry of the spiral.
Analyses of the spiral geometry in shells of the mollusc Pecten maximus and the brachiopod Terebratulina retusa indicate a relative reduction in morphological variability within the population during growth. The spiral, as measured by a model of exponential radial expansion, tends to converge on a particular adult form, irrespective of irregularities during early growth phases. The recurrence of this pattern of variability in populations from two separate phyla (molluscs and brachiopods) suggests a common mechanism controlling shell form. Brachiopoda. Mollusca, coiling, spiral. morphogenetic regulation, growth .  相似文献   

6.
The morphological variation of the sulcal development and shell outline in large Permian neospiriferine brachiopods including Fasciculatia Waterhouse, 2004 is investigated using geometric morphometrics. The sulcal tongues of spiriferide brachiopods can be, in a qualitative sense, categorized into three types according to the degree of their development: short sulcal tongue, long sulcal tongue and geniculated sulcal tongue. All three types have been noted within Fasciculatia striatoparadoxa, regardless of the nature of the substrate which they originally inhabited. To quantify its morphological variation both in sulcal development and shell outline, 51 brachiopod shells were scanned with a three‐dimensional (3‐D) surface imaging device, and their 3‐D models were reconstructed. Using two landmarks and 58 semilandmarks designated on the surface of the reconstructed 3‐D models, a landmark‐based morphometric analysis was performed. Our result demonstrates a significant intraspecific variation of sulcal development in F. striatoparadoxa and its relatives. Local environmental factors, especially the intensity of ambient water flow, are invoked as the most likely cause for this intraspecific variation. Additionally, this study also shows that there are considerable interspecific distinctions in shell outline among Fasciculatia species, independent of the high variation in the sulcal development. The strong stability of overall shell outline at species level implies a decoupled morphological development between sulcal tongue and whole shell outline. The 3‐D morphometric approach applied here demonstrates its great utility as a tool for quantifying and analysing the morphological variation of highly convex brachiopod shells.  相似文献   

7.
In contrast to the Palaeozoic to Jurassic fossil record, modern tropical and subtropical shallow-water brachiopods are typically small-sized and mostly restricted to cryptic habitats in coral reefs, but information on microhabitat-composition is scant. At Dahab, northern Red Sea, living brachiopods of the genus Argyrotheca were only detected on massively encrusted coral colonies attached to encrusting foraminifers and coralline red algae. Three samples from autochthonous sediments underneath coral colonies are comparatively rich in the brachiopod genera Megerlia and Argyrotheca, and additionally show low numbers of Novocrania and Thecidellina. Based on a coarse-grain analysis including more than 16,000 components >1 mm, these brachiopod shells co-occur with skeletal components of 11 higher taxa. Decapods, fixosessile foraminifers, molluscs, scleractinians, and coralline red algae clearly dominate the assemblages. Brachiopods in this study always contribute less than 2% to the sediment composition. This confirms previous results that even in brachiopod habitats the contribution of brachiopod shells to the total sediment composition is almost negligible. Our study indicates that brachiopods co-occur with pteriomorph bivalves and other epifauna in the cryptic habitats with limited space for encrusters or epibionts on the undersides of scleractinians and it tentatively supports the hypothesis of brachiopods preferring habitats with low grazing pressure, because shelly components of grazers (polyplacophorans and regular echinoids) are rare in our samples.  相似文献   

8.
Acrotretoids, one of the oldest brachiopod groups, are abundant in the Lower Cambrian Jiulaodong Formation. The shell of Linnarssonia sp. is composed of two layers: a primary layer and a columnar secondary layer. The primary layer is mostly exfoliated, resulting in exposure of the openings to the central canal of the columns. Filae are seen on the surface of the columnar layer, indicating that the columnar secondary layer has influenced changes in ornament on the shell surface. The larval shell has only very weak ripples; the post-larval shell has obvious concentric ribs. Small pits of variable shape cover almost the entire shell surface. The secondary layer is composed of several columnar laminations, each of which comprises both the upper and lower laminae and the cylindrical columns between them. On the inner side of shell the thin columnar laminations increase. The new microstructural data show that two shell layers are developed in Early Cambrian acrotretoid brachiopods; the columnar lamination may be a primitive feature of the microstructural development of the Brachiopoda and may help establish the affinity between different stem-group brachiopods.  相似文献   

9.
SYNOPSIS. Bivalved, exoskeletal shells have evolved independentlyin brachiopods, several groups of molluscs, ostracodes, conchostracans,phyllocarids, and the Paleozoic rugose coral Calceola. Composedof a variety of usually composite organic and mineral materials,they may be rigid or somewhat flexible. Shell growth can occuronly by accretion at the margins and over the inner surfacesof the valves. Isometric growth produces logarithmic spiralcones, paradigms from which real shells depart slightly or veryfar, in allometric response to physiological or mechanical demandsof function. Shells which do not grow are molted and replacedat regular intervals in ostracodes and phyllocarids. The bivalvedshell is the simplest of lever skeletons, its two elements beingarticulated in most cases about a fixed axis. Its role in supportof soft tissues is complemented in all groups either by hydrostaticorgans, as in the molluscan foot and brachiopod lophophore,or by an inner, articulated chitinous exoskeleton, as in thebivalved arthropods. Common constraints imposed by growth processesand the mechanics of articulation prescribe the observed closeconvergence of the hinge, adductor muscles, and structures thatmaintain valve alignment. Divergent adaptations accomodate variedshell functions, as protectivecovers (one adductor adequate),as digging tools (two adductors and/or substantial hinge teethrequired), in channeling feeding currents, and as hydrofoils.The bivalved shell facilitates a wide range of adaptations inaquatic environments, but it places stringent limits on sizeand mobility. Such extensive convergence reflects the shell'sease of construction,its multiple functions, and the limitedvariety of viable skeletal designs.  相似文献   

10.

A detailed study of over 2500 host brachiopods, from the Middle Devonian Hamilton Group of New York State, revealed distinct patterns of epibiont encrustation, that provide insight into taphonomy and paleoautecology of the host brachiopod shells and depositional environments. The concavo‐convex orthid, Tropidoleptus carinatus (Conrad), as well as strophomenid, and smooth athyrid brachiopods are among the most heavily encrusted. However, terebratulids of nearly identical size and shape are relatively clean of epibionts. This selective distribution strongly suggests that epibionts were discouraged from settling on punctate brachiopods. Brachiopods with small spines and frills were also nearly clean of epibionts, possibly because of entrapment of a mud layer, which made the outer layer of the host inhospitable for larval settling. Concavo‐convex taxa reveal high percent coverage and diversity of epibionts on the convex valve, which probably rested on the substrate during the life of brachiopod. This pattern is observed even on brachiopods that were buried with the convex valve downward. This implies complex post‐mortem histories involving multiple episodes of reorientation and colonization.  相似文献   

11.
The shell structure of the Lower Cambrian Mickwitzia , a bilaterally symmetrical bivalve hitherto doubtfully assigned to the Brachiopoda, confirms that the genus shares characters with linguliform brachiopods. The columnar lamination of its organophosphatic shell is homologous with that characterizing acrotretides. The shell, however, is also pervaded by striated apatitic tubes indistinguishable from those permeating the sclerites of the problematic organophosphatic, laminar–shelled Micrina which is close to Halkieria . No crown group brachiopods have such tubes that are presumed to have contained setae. The presence of both these features in the Mickwitzia shell suggests that the stock is a stem group brachiopod with a halkieriid ancestry.  相似文献   

12.
This study determines the distribution of magnesium and sulphur in the shells of two species of brachiopod from the same environment to highlight environmental and biological influences on shell composition. In Terebratulina retusa there are differences in magnesium concentration between the primary layer and the outer and inner regions of the secondary layer. In contrast, Novocrania anomala has a shell composed of high magnesium calcite and there is no significant difference in magnesium concentration between the primary and the secondary shell layers. Sulphur provides an indication of the distribution of sulphated organic matrix within the shells of T. retusa and N. anomala . In T. retusa the distribution of magnesium and sulphur correlates across the shell; however, there is no evidence for a relationship between magnesium and sulphur distribution in N. anomala . The relationship between magnesium and sulphur in T. retusa indicates that a proportion of the magnesium content of the shell is associated with the sulphated fraction of the organic matrix. In these two species of brachiopod, from the same environment, magnesium and organic concentration and distribution are very different, emphasizing the importance of fully understanding the factors that control biomineral composition before the application of these biominerals to environmental studies.  相似文献   

13.
Brachiopod and phoronid phylogeny is inferred from SSU rDNA sequences of 28 articulate and nine inarticulate brachiopods, three phoronids, two ectoprocts and various outgroups, using gene trees reconstructed by weighted parsimony, distance and maximum likelihood methods. Of these sequences, 33 from brachiopods, two from phoronids and one each from an ectoproct and a priapulan are newly determined. The brachiopod sequences belong to 31 different genera and thus survey about 10% of extant genus-level diversity. Sequences determined in different laboratories and those from closely related taxa agree well, but evidence is presented suggesting that one published phoronid sequence (GenBank accession UO12648) is a brachiopod-phoronid chimaera, and this sequence is excluded from the analyses. The chiton, Acanthopleura, is identified as the phenetically proximal outgroup; other selected outgroups were chosen to allow comparison with recent, non-molecular analyses of brachiopod phylogeny. The different outgroups and methods of phylogenetic reconstruction lead to similar results, with differences mainly in the resolution of weakly supported ancient and recent nodes, including the divergence of inarticulate brachiopod sub-phyla, the position of the rhynchonellids in relation to long- and short-looped articulate brachiopod clades and the relationships of some articulate brachiopod genera and species. Attention is drawn to the problem presented by nodes that are strongly supported by non-molecular evidence but receive only low bootstrap resampling support. Overall, the gene trees agree with morphology-based brachiopod taxonomy, but novel relationships are tentatively suggested for thecideidine and megathyrid brachiopods. Articulate brachiopods are found to be monophyletic in all reconstructions, but monophyly of inarticulate brachiopods and the possible inclusion of phoronids in the inarticulate brachiopod clade are less strongly established. Phoronids are clearly excluded from a sister-group relationship with articulate brachiopods, this proposed relationship being due to the rejected, chimaeric sequence (GenBank UO12648). Lineage relative rate tests show no heterogeneity of evolutionary rate among articulate brachiopod sequences, but indicate that inarticulate brachiopod plus phoronid sequences evolve somewhat more slowly. Both brachiopods and phoronids evolve slowly by comparison with other invertebrates. A number of palaeontologically dated times of earliest appearance are used to make upper and lower estimates of the global rate of brachiopod SSU rDNA evolution, and these estimates are used to infer the likely divergence times of other nodes in the gene tree. There is reasonable agreement between most inferred molecular and palaeontological ages. The estimated rates of SSU rDNA sequence evolution suggest that the last common ancestor of brachiopods, chitons and other protostome invertebrates (Lophotrochozoa and Ecdysozoa) lived deep in Precambrian time. Results of this first DNA-based, taxonomically representative analysis of brachiopod phylogeny are in broad agreement with current morphology-based classification and systematics and are largely consistent with the hypothesis that brachiopod shell ontogeny and morphology are a good guide to phylogeny.  相似文献   

14.
A new genus and species of a Middle Cambrian stem group brachiopod, Acanthotretella spinosa n. gen. and n. sp., is described from the Burgess Shale Formation. Most of the 42 specimens studied came from the Greater Phyllopod bed (Walcott Quarry) and were collected from five bed assemblages, each representing a single obrution event. Specimens are probably preserved within their original habitat. In contrast to all brachiopods known from the Burgess Shale, the shells of the new stem group brachiopod are often deformed and do not show signs of brittle breakage, which suggests that the valves were originally either entirely organic in composition or, more likely, had just a minor mineral component. Acanthotretella spinosa differs from all the other described Cambrian brachiopods in that it is covered by long, slender and possibly partly mineralized spines that are posteriorly inclined at an oblique angle away from the anterior margin. The spines penetrate the shell and are mainly comparable with the thorn‐like organic objects that have been inferred from early siphonotretoid brachiopods. The pedicle was slender and was composed of a central coelomic region and emerged from an apical foramen at the end of an internal pedicle tube. The finding of a pedicle attached to the macrobenthic algae Dictyophycus and other epibenthos implies that A. spinosa did not have an infaunal mode of life. The visceral region and interior characters are poorly preserved.  相似文献   

15.
PHYLOGENETIC RELATIONSHIPS AMONG EXTANT BRACHIOPODS   总被引:1,自引:0,他引:1  
Abstract— The monophyletic status of the Brachiopoda and phylogenetic relationships within the phylum have long been contentious issues for brachiopod systematists. The relationship of brachiopods to other lophophore-bearing taxa is also uncertain; results from recent morphological and molecular studies are in conflict. To test current hypotheses of relationship, a phylogenetic analysis was completed (using PAUP 3.1.1) with 112 morphological and embryological characters that vary among extant representatives of seven brachiopod superfamilies, using bryozoans, phoronids, pterobranchs and sipunculids as outgroups. In the range of analyses performed, brachiopod monophyly is well supported, particularly by characters of soft anatomy. Arguments concerning single or multiple origins of a bivalved shell are not relevant to recognizing brachiopods as a clade. Articulate monophyly is very strongly supported, but inarticulate monophyly receives relatively weak support. Unlike previous studies, the nature of uncertainties about the clade status of Inarticulata are detailed explicitly here, making them easier to test in the future. Calcareous inarticulates appear to share derived characters with the other inarticulates, while sharing many primitive characters with other calcareous brachiopods (the articulates). Experimental manipulation of the data matrix reveals potential sources of bias in previous hypotheses of brachiopod phylogeny. Although not tested explicitly, lophophorate monophyly is very tentatively supported. Molecular systematic studies of a diverse group of brachiopods and other lophophorates will be particularly welcome in providing a test of the conclusions presented here.  相似文献   

16.
The brachiopod fold: a neglected body plan hypothesis   总被引:1,自引:0,他引:1  
Attention is drawn to Nielsen's radical body plan concept, here named the 'brachiopod fold hypothesis', under which brachiopods and phoronids are recognized to be transversely folded across the ontogenetic anterior–posterior axis so that, to make useful comparisons with other phyla, these organisms must be conceptually unfolded. Under the hypothesis brachiopod brachial and pedicle shell valves are respectively 'anterior' and 'posterior' rather than 'dorsal' and 'ventral' as traditionally described. The hypothesis makes sense of the symmetry axes of the brachiopod shell, is consistent with various indications from fossil and Recent brachiopods, and gives rise to predicted patterns of axis–determining gene expression that differ from those obtaining under the traditional view of the body plan, whilst the variety of folding movements in different lineages implies that superficially dissimilar morphogenetic folds may be fundamentally homologous. Convergent folding patterns are noted in some other organisms. A previous conjecture that inarticulate linguloid brachiopods were derived from halkieriid–like ancestors is elaborated with proposals that recognize possible functional continuities of coelomic and marginal sclerite functions, and it is noted that an ancestrally facultative fold could have become incorporated by genetic assimilation into the brachiopod developmental program. An experimental approach is outlined to test the possibility that some members of the 'small shelly fauna' may have been members of the halkieriid–like brachiopod stem lineage and it is also suggested that buoyancy modification may have been an important function of mineralization amongst Lower Cambrian floaters and swimmers, since negative buoyancy would facilitate access to the benthic niche.  相似文献   

17.
Organophosphatic shells of the brachiopod Lingula squarniformis , collected from Scottish Lower Carboniferous shales and mudstones of intertidal to sublittoral provenance, have been studied to ascertain chemico-structural changes resulting from fossilization. Enough original shell has been preserved at ultrastructural and molecular levels to confirm that Carboniferous and Recent integuments are homologous with stratiform successions of apatitic to organic laminae forming rhythmic sets. One of the main organic constituents, the acidic, hydrophilic gel glycosaminoglycans (GAGs), is the dominant component towards the tops of rhythms. During fossilization of the Carboniferous shells, GAGs degraded incrementally without disturbing apatitic ultrastructures, and the spaces so created became partly filled with sheets of recrystal-lized apatite with some kaolinite or with books and plates of kaolinite. The kaolinite in the shells contrasts with the illite of the entombing sediments and suggests that degrading acidic GAGs mediated in clay formation in situ . The sediments also contain framboidal pyrite, which is virtually absent from the shells themselves but is usually even more abundant, with a greater range of trace metals, in the sedimentary fills of complete shells. This imbalance suggests mediation by another gel, the glycocalyx, secreted by the inner epithelium of the brachiopod mantle. The glycocalyx would have lined the shell interior and could have served as a sorption film for dissolved metals precipitated as compounds on decomposition of body tissue.  相似文献   

18.
The shells of rhynchonelliform brachiopods have an outer (primary) layer of acicular calcite and an inner (secondary) layer of calcite fibres which are parallel to the shell exterior. Atomic force microscopy (AFM) reveals that these fibres are composed of large triangular nanogranules of about 600-650 nm along their long axis. The nanogranules are composites of organic and inorganic components. As the shell grows, the fibres elongate with the calcite c-axis perpendicular to the fibre axis as demonstrated by electron backscatter diffraction (EBSD). Thus, despite being a composite structure comprising granules that are themselves composites, each fibre is effectively a single crystal. The combination of AFM and EBSD reveals the details of the structure and crystallography of these fibres. This knowledge serves to identify those aspects of biological control that must be understood to enable comprehension of the biological control exerted on the construction of these exquisite biomineral structures.  相似文献   

19.
Substrate specificity of Auloporida (Tabulata) from the Ska?y Fm. (Upper Eifelian-Lower Givetian) of the Holy Cross Mts., Poland, has been recognized. Kyrtatrypa sp., a rare species in the formation (under 5%), was the most often encrusted brachiopod (59% of investigated specimens), while the most often occurring brachiopod, Aulacella eifeliensis (de Verneuil) was nearly not encrusted. The majority of encrusted brachiopods were larger than 20 mm, while smaller brachiopods occur abundantly in the Formation. The substrate specificity has been caused mainly by the ornamentation of the host's shell. The position of corallites along the commissure of the brachiopod shell proves that auloporids often encrusted living hosts. The epizoan probably used water currents produced by brachiopod's lophophore impoverishing the host's food composition, their relationship can therefore be described as scramble competition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号