首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proportion of prestalk and prespore cells in Dictyostelium discoideum slugs is often cited as an example of "almost perfect" regulation. The pattern is similar over a very wide range of cell number; furthermore, removal of either of the cell types leads to compensatory transdifferentiation. Several studies of Dictyostelium fruiting bodies, however, have suggested that proportioning in Dictyostelium differs systematically from true constancy. We have confirmed this in the slug stage using a short-lived beta-galactosidase as a reporter of the prestalk specific ecmA gene expression: the prestalk proportion decreases from 24+/-5% in slugs of 10(3) cells to 10+/-3% when 10(5) cells are present. Regeneration experiments suggest that this difference is not due to a modulation of the proportioning set-point by size, as one might have expected; instead there appears to be a regulatory "tolerance zone" at all sizes. After amputation of the whole posterior region, transdifferentiation stops after the fraction of prestalk has been reduced from 100% to 28+/-20%, well above the initial value of 10+/-3%, while after anterior removal the transdifferentiation endpoint is about 10%. Most strikingly, we find no regulation at all after partial amputations of the prespore region. It seems that any prestalk proportion is stable between a approximately 10% lower threshold and a approximately 30% upper threshold. To explain this, we propose a regulation mechanism based on a negative feedback plus cell type bistability. In both intact and regenerating slugs we find that the slug morphology is regulated so that the length-to-width ratio of the anterior region is constant.  相似文献   

2.
It has been shown that, in Dictyostelium discoideum, conversion of prestalk cells to prespore cells in suspension cultures is inhibited by coexisting prespore cells. To examine whether the inhibition of conversion requires direct cell contact or is mediated by substances secreted by the cells, prestalk cells and prespore cells were incubated in shaken suspension, separated from each other by a dialysis membrane, and conversion of the prestalk cells to prespore cells scored after 24 h. Prestalk-to-prespore conversion was significantly inhibited if the density of the prespore cells was sufficiently high. In contrast, prestalk cells had little influence on prestalk-to-prespore conversion. Media conditioned by prespore cells, but not by prestalk cells, also inhibited the conversion of prestalk cells. Adenosine, propionate, diethylstilboestrol and differentiation inducing factor (DIF), all of which are known to influence the prestalk/prespore differentiation, were examined for their effects on prestalk-to-prespore conversion. Among these, all except adenosine significantly inhibited the conversion. Based on these results, possible mechanisms for maintenance of the constant cell-type ratio in D. discoideum slugs were discussed.  相似文献   

3.
We have determined the proportions of the prespore and prestalk regions in Dictyostelium discoideum slugs by in situ hybridization with a large number of prespore- and prestalk-specific genes. Microarrays were used to discover genes expressed in a cell type-specific manner. Fifty-four prespore-specific genes were verified by in situ hybridization, including 18 that had been previously shown to be cell type specific. The 36 new genes more than doubles the number of available prespore markers. At the slug stage, the prespore genes hybridized to cells uniformly in the posterior 80% of wild-type slugs but hybridized to the posterior 90% of slugs lacking the secreted alkylphenone differentiation-inducing factor 1 (DIF-1). There was a compensatory twofold decrease in prestalk cells in DIF-less slugs. Removal of prespore cells resulted in cell type conversion in both wild-type and DIF-less anterior fragments. Thus, DIF-1 appears to act in concert with other processes to establish cell type proportions.  相似文献   

4.
The effects of low temperature (5°C) on cell-type conversion in whole slugs of Dictyostelium discoideum and their anterior prestalk- and posterior prespore-isolates were examined immunohistochemically and electronmicroscopically. When slugs were incubated for nine days at 5°C, the proportion of cells containing spore-antigens increased from about 75% to 85%. More important, the proportion of prespore and spore cells increased from about 3% to 40% in anterior prestalk isolates incubated at 5°C for 12 days, but no cell-type conversion from prespore to prestalk cells occurred in posterior prespore isolates. Therefore, the mechanism regulating the proportions of cells that operates at 21 °C does not operate at low temperature. The cells with full competence for stalk differentiation could change into stalk cells even at 5°C, because a short stalk was always formed when early culminants were transferred to low temperature. The effects of low temperature on several sequential steps of cell differentiation are discussed on the basis of these findings. The ultrastructural characteristics during the process of cell-type conversion are also described.  相似文献   

5.
Spatial gradients of sequestered and free cellular calcium (Ca2+) exist in the slug of Dictyostelium discoideum (Maeda and Maeda, 1973; Tirlapur et al., 1991; Azhar et al., 1995; Cubitt et al., 1995). When we vary intracellular Ca2+ with the help of calcium buffers and the ionophore Br-A23187, there are striking effects on slug morphology, patterning and cell differentiation. In the presence of a calcium ionophore, high external Ca2+ levels lead to an increase of intracellular sequestered and free Ca2+, the formation of long slugs, a decrease in the fraction of genetically defined prespore cells and 'stalky' fruiting bodies. Conversely, a lowering of external Ca2+ levels results in a decrease of intracellular Ca2+, the formation of short slugs, an increase in the prespore fraction and 'spory' fruiting bodies. We infer that Ca2+ plays a significant morphogenetic role in D. discoideum development, by selectively promoting the prestalk pathway relative to the prespore pathway.  相似文献   

6.
Abstract. It is very likely that oscillatory cAMP secretion and cAMP relay organize postaggregative cell movement in the cellular slime molds. We present evidence indicating that cAMP signaling may also be involved in the formation of the prestalk/prespore pattern in slugs of Dictyostelium discoideum. Reduction of cAMP relay in slugs caused by caffeine increased the proportion of prespore tissue. An even stronger increase was observed in a mutant with a very low CAMP-relay response. The effects on pattern resulting from a reduction of cAMP relay are not due to a reduction in the amount of cAMP in the slug, but to an as yet undefined property of oscillatory cAMP signaling.  相似文献   

7.
We have previously identified a stalk-specific wheat germ agglutinin (WGA)-binding protein, wst34, in the cellular slime mould Dictyostelium discoideum [Biochem. Cell Biol. 68 (1990) 699]. Here, we found another stalk-specific WGA-binding protein, wst25, which was detected with two antisera that recognize wst34. Using the two marker proteins, we then analyzed and compared the pathways of prestalk-to-stalk maturation and prespore-to-stalk conversion in vitro and in vivo. Prestalk cells isolated from normally formed slugs can be converted to stalk cells (designated StI) in vitro with 8-bromo-cAMP (Br-cAMP), whereas prespore cells isolated from slugs can be converted to fully vacuolated stalk cells (designated StII) in vitro with Br-cAMP and DIF-1. During the process of prespore-to-stalk conversion, prespore-specific mRNAs, D19 and 2H3, disappeared rapidly, while prestalk-specific mRNAs, ecmA and ecmB, appeared at 2h of incubation and increased thereafter. Most importantly, however, the StII cells thus formed were biochemically different from the StI cells originated from prestalk cells; that is, StI cells expressed wst34 but not wst25, while StII cells expressed wst25 but not wst34. When prespore cells isolated from slugs were allowed to develop on a substratum, they differentiated into spores and stalk cells and formed fruiting bodies, and the stalk cells formed from prespore cells in vivo expressed wst25 but not wst34. The present results indicate that there are two types of stalk cells, StI (prestalk-origin) and StII (prespore-origin), and that wst34 and wst25 are the specific markers for StI and StII, respectively.  相似文献   

8.
Evidence has been obtained indicating that the cell's position in the cell cycle at the onset of starvation is a naturally occurring variable closely involved in the subsequent sorting and pattern formation during the development of Dictyostelium discoideum Ax2. It is of interest to know whether a similar phenomenon is also noticed in species other than D. discoideum and also without any treatment of cells for cell synchronization. For this, the sorting behavior of D. mucoroides-7 ( Dm7 ) cells and its relation to the cell-cycle phase at the onset of starvation were analyzed, using non-synchronized Dm7 cells pulse-labeled with 5'-bromo-2-deoxyuridine (BrdU). The results demonstrate that Dm7 cells starved at the early G2 phase aggregate most rapidly, but are eventually sorted out to the posterior prespore zone of migrating slugs. In contrast, cells starved at the mid late G2 phase exhibited slower aggregation, but were sorted out to the anterior zone (tip), this being basically similar to the sorting behavior of D. discoideum cells. Measurements of cell numbers and nuclearity provided evidence that approximately 80% of cells progressed their cell-cycle after the formation of multicellular structures (mounds), probably coupling with prespore differentiation as in the case of D. discoideum . Thus, cell cycle-dependent sorting during Dictyostelium development is most likely to be a common phenomenon in different species.  相似文献   

9.
Dictyostelium discoideum prestalk cells and prespore cells from migrating slugs and culminating cell aggregates were isolated by Percoll density centrifugation. Several activities relevant to the generation, detection, and turnover of extracellular cyclic AMP (cAMP) signals were determined. It was found that: the two cell types have the same basal adenylate cyclase activity; prespore cells and prestalk cells are able to relay the extracellular cAMP signal equally well; intact prestalk cells show a threefold higher cAMP phosphodiesterase activity on the cell surface than prespore cells, whereas their cytosolic activity is the same; intact prestalk cells bind three to four times more cAMP than prespore cells; no large differences in cAMP metabolism and detection were observed between cells derived from migrating slugs and culminating aggregates. The results are discussed in relation to the possible morphogenetic role of extracellular cAMP in Dictyostelium cell aggregates. On the basis of the properties of the isolated cells we assume that a gradient of extracellular cAMP exists in Dictyostelium aggregates. This gradient appears to be involved in the formation and stabilization of the prestalk-prespore cell pattern.  相似文献   

10.
Abstract. Conversion of prestalk cells to prespore cells was investigated in normally proportioned as well as prestalk-enriched cell populations under two different conditions: in slugs migrating on agar plates and in suspension cultures of dissociated slug cells in the presence of cAMP. In most experiments, prestalk cells labelled with a fluorescent dye (TRITC) and unlabelled prespore cells were combined together by grafting (for migrating slugs) or by mixing (for suspension cultures) to distinguish conversion of prestalk cells to prespore cells. In both migrating and dissociated slugs, minimal conversion of prestalk to prespore cells was observed when the proportion of prespore cells in the whole population was maintained at a normal level. When the prespore proportion in the initial population was lowered, a considerable fraction of prestalk cells underwent cell-type conversion to become prespore cells or spores. These results indicate that the presence of prespore cells somehow prevents prestalk cells from becoming prespore.  相似文献   

11.
Previous studies have shown that Dictyostelium discoideum spore coat proteins are found in prespore cells, which are localized to the posterior region of migrating slugs, and in the coats of mature spores. Prespore vesicles, identified by morphology and by staining with anti-D. mucoroides spore serum, are also localized in the posterior region of migrating slugs. Using antisera specific to the spore coat proteins, we show that the spore coat proteins are packaged in prespore vesicles. They are present in the vesicles as a complex which can be dissociated by denaturation. The anti-D. mucoroides spore serum reacts with at least five proteins in whole spore extracts including the spore coat proteins SP96 and SP70.  相似文献   

12.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

13.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

14.
Changes of fine structure during prolonged migration of Dictyostelium discoideum slugs were studied by electronmicroscopy. Prespore specific vacuoles of cells located near the substratum gradually degenerated and the prespore antigen contained in them was lost. During the process, mitochondria in the prespore cells were transformed dramatically: as the mitochondrion elongates, its central part becomes thinner and the cristae become localized at its two ends. Then it bends and its two ends fuse to segregate part of the cytoplasm. The cristae then accumulate in the original ends. Similar mitochondrial transformation was observed in prespore cells of cell masses induced to culminate after a long period of migration.  相似文献   

15.
A method was described for isolation of the prespore specific vacuole (PSV) from slugs of the cellular slime mold, D. discoideum . A cellular component, which was fractionated in accordance with immunohistochemical staining using heteroplastic antispore serum, was found to consist of only the PSV. It was thus concluded that the PSV is identical with the cytoplasmic granule which has been shown by the antiserum to be specifically present in the prespore cell, and hence that the PSV is the only structure which contains the prespore specific substance (antigenic mucopolysaccharide). The isolated PSV contained polysaccharide equivalent to 14% of its protein content, and antigenic mucopolysaccharide constitutes about 60% of the total polysaccharide.  相似文献   

16.
It was previously shown [K. Okamoto, J. Gen. Microbiol. 127, 301 (1981)] that Dictyostelium discoideum cells dissociated from early aggregates, but not aggregation competent cells obtained in a suspension culture, undergo prespore differentiation, when transferred into a medium containing glucose, albumin, and cAMP. Therefore, the former, but not the latter, is considered to have been acquired "differentiation competence." In the present work, the requirements for cells to acquire the differentiation competence are investigated with D. discoideum NC4 strain. On solid substratum, the incubation above a threshold density is absolutely required for this process, while cell aggregation itself is not essential. In suspension cultures, the competence is acquired only under hypertonic conditions. Inhibition of protein synthesis or depletion of cAMP does not affect the acquisition process of the competence. The requirement of hypertonic treatment was also investigated with several other D. discoideum strains.  相似文献   

17.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

18.
Abstract. We show that the anterior, prestalk region of the Dictyostelium slug contains cells which express, or have expressed, a prespore-specific marker. We term these cells "prespore-like cells" (PLC). In newly formed slugs there is a sharp prespore/prestalk boundary, with very few PLC, but after several days of migration the clear demarcation between prespore and prestalk zones breaks down because the number of PLC increases dramatically. This is consistent with previous observations showing there to be rapid interchange of cells between the prestalk and prespore regions. This is not, however, their only source, as a scattering of PLC appear when separate prestalk and prespore regions first become apparent at the time of tip formation. Also, at culmination, there is respecification of "prespore" cells at the pre-stalk/prespore boundary to form part of the mature stalk. The existence of these cells, and of PLC, may explain why we find prespore-specific mRNAs in mature stalk cells.  相似文献   

19.
Starvation induces free-living Dictyostelium discoideum amoebae to form slugs that typically contain 100,000 cells. Only recently have sufficient clues become available to suggest how coordinated cell actions might result in slug movement. We propose a “squeeze-pull” model that involves circumferential cells squeezing forward a cellular core, followed by pulling up of the rear. This model takes into account the different classes of cells in the slug; it is proposed that prestalk cells are engines and prespore cells are the cargo.  相似文献   

20.
The proportions of prespore and prestalk cells in Dictyostelium discoideum are regulated so that they are size invariant and can adjust when the ratio is perturbed. We have found that disruption of the gene amdA that encodes AMP deaminase results in a significantly increased proportion of prestalk cells. Strains lacking AMP deaminase form short, thick stalks and glassy sori with less than 5% the normal number of spores. The levels of prestalk-specific mRNAs in amdA(-) cells are more than twice as high as those in wild-type strains and prespore-specific mRNAs are reduced. Using an ecmA::lacZ construct to mark prestalk cells, we found that amdA(-) null slugs have twice the normal number of prestalk cells. The number of cells expressing an ecmO::lacZ construct was not affected by loss of AmdA, indicating that the mutation results in an increase in PST-A prestalk cells rather than PST-O cells. This alteration in cell-type proportioning is a cell-autonomous consequence of the loss of AMP deaminase since mutant cells developed together with wild-type cells still produced excess prestalk cells and wild-type cells carrying the ecmA::lacZ construct formed normal numbers of prestalk cells when developed together with an equal number of amdA(-) mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号