首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A restriction fragment carrying the major coat protein gene (gene VIII) was excised from the DNA of the class I filamentous bacteriophage fd, which infects Escherichia coli. This fragment was cloned into the expression plasmid pKK223-3, where it came under the control of the tac promoter, generating plasmid pKf8P. Bacteriophage fd gene VIII was similarly cloned into the plasmid pEMBL9+, enabling it to be subjected to site-directed mutagenesis. By this means the positively charged lysine residue at position 48, one of four positively charged residues near the C terminus of the protein, was turned into a negatively charged glutamic acid residue. The mutated fd gene VIII was cloned back from the pEMBL plasmid into the expression plasmid pKK223-3, creating plasmid pKE48. In the presence of the inducer isopropyl-beta-D-thiogalactoside, the wild-type and mutated coat protein genes were strongly expressed in E. coli TG1 cells transformed with plasmids pKf8P and pKE48, respectively, and the product procoat proteins underwent processing and insertion into the E. coli cell inner membrane. A net positive charge of only 2 on the side-chains in the C-terminal region is evidently sufficient for this initial stage of the virus assembly process. However, the mutated coat protein could not encapsidate the DNA of bacteriophage R252, an fd bacteriophage carrying an amber mutation in its own gene VIII, when tested on non-suppressor strains of E. coli. On the other hand, elongated hybrid bacteriophage particles could be generated whose capsids contained mixtures of wild-type (K48) and mutant (E48) subunits. This suggests that the defect in assembly may occur at the initiation rather than the elongation step(s) in virus assembly. Other mutations of lysine-48 that removed or reversed the positive charge at this position in the C-terminal region of the coat protein were also found to lead to the production of commensurately longer bacteriophage particles. Taken together, these results indicate direct electrostatic interaction between the DNA and the coat protein in the capsid and support a model of non-specific binding between DNA and coat protein subunits with a stoicheiometry that can be varied during assembly.  相似文献   

2.
The major (gene VIII) coat protein of bacteriophage fd was radiolabelled by treating the virus with methyl[3H]acetimidate without causing any loss of infectivity. Complete amidination of lysine-8 in the amino acid sequence of the protein was achieved but little or no modification of the lysine residues near the C terminus was observed. This supports the assumption that the coat protein is oriented in the viral filament with its N terminus on the outside and its C-terminal region abutting the DNA. Escherichia coli was co-infected with radiolabelled bacteriophage and with unlabelled miniphage, a shorter defective form of phage fd. Radiolabel was detected in the progeny miniphage, proving that individual coat protein subunits can be recycled and assembled onto progeny miniphage DNA. About 35% of the coat protein subunits of phage particles infecting E. coli were recycled in 1 h. These facts support a model of the assembly and disassembly of the virion at the bacterial membrane in which the end of the particle containing the minor adsorption (gene III) protein, which is presumably the first to disassemble during infection, is the last to assemble during morphogenesis.  相似文献   

3.
《Gene》1996,171(1):49-51
We have modified the genome of the filamentous bacteriophage fd and also constructed a number of new vectors for the purpose of displaying peptides on the surface of the virion. These vectors facilitate the directional cloning of DNA encoding a peptide of interest at or near the N terminus of the major coat protein, the product of the bacteriophage gene VIII, and the construction of hybrid capsids in which the modified coat protein is interspersed with wild-type coat protein subunits.  相似文献   

4.
5.
We describe here two systems for encoding foreign amino acid sequences in the exposed N-terminal segment of the major coat protein of bacteriophage fd. Small peptides can be encoded directly; larger peptides are encoded in hybrid bacteriophage particles, in which the capsid is formed from a mixture of wild-type and modified coat proteins. In both cases, the peptides are present in multiple copies per phage particle. Peptides that represent the circumsporozoite protein, the major surface antigen of the sporozoites of the malaria parasite, Plasmodium falciparum, were inserted in this way and found to be highly immunogenic. These systems should prove to be valuable in displaying specific or random peptides as antigens, and could lead to cheap and effective vaccines. They will also allow rapid screening of peptides as potential agents of other biological effects, with important applications in biomolecular design.  相似文献   

6.
Dynamics of fd coat protein in the bacteriophage   总被引:1,自引:0,他引:1  
The dynamics of the coat protein in fd bacteriophage are described with solid-state 15N and 2H NMR experiments. The virus particles and the coat protein subunits are immobile on the time scales of the 15N chemical shift anisotropy (10(3) Hz) and 2H quadrupole (10(6) Hz) interactions. Previously we have shown that the Trp-26 side chain is immobile, that the two Tyr and three Phe side chains undergo only rapid twofold jump motions about their C beta-C gamma bond axis [Gall, C. M., Cross, T. A., DiVerdi, J. A., & Opella, S. J. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 101-105], and that most of the backbone peptide linkages are highly constrained but do undergo rapid small amplitude motions [Cross, T. A., & Opella, S. J. (1982) J. Mol. Biol. 159, 543-549] in the coat protein subunits in the virus particles. In this paper, we demonstrate that the four N-terminal residues of the coat protein subunits are highly mobile, since both backbone and side-chain sites of these residues undergo large amplitude motions that are rapid on the time scales of the solid-state NMR experiments. In addition, the dynamics of the methyl-containing aliphatic residues Ala, Leu, Val, Thr, and Met are analyzed. Large amplitude jump motions are observed in nearly all of these side chains even though, with the exception of the N-terminal residue Ala-1, their backbone peptide linkages are highly constrained. The established information about the dynamics of the structural form of fd coat protein in the virus particle is summarized qualitatively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.  相似文献   

8.
Viral capsids are dynamic structures which self-assemble and undergo a series of structural transformations to form infectious viruses. The dsDNA bacteriophage P22 is used as a model system to study the assembly and maturation of icosahedral dsDNA viruses. The P22 procapsid, which is the viral capsid precursor, is assembled from coat protein with the aid of scaffolding protein. Upon DNA packaging, the capsid lattice expands and becomes a stable virion. Chemical cross-linking analyzed by mass spectrometry was used to identify residue specific inter- and intra-subunit interactions in the P22 procapsids. All the intersubunit cross-links occurred between residues clustered in a loop region (residues 157-207) which was previously identified by mass spectrometry based on hydrogen/deuterium exchange and biochemical experiments. DSP and BS3 which have similar distance constraints (12 angstroms and 11.4 angstroms, respectively) cross-linked the same residues between two subunits in the procapsids (K183-K183), whereas DST, a shorter cross-linker, cross-linked lysine 175 in one subunit to lysine 183 in another subunit. The replacement of threonine with a cysteine at residue 182 immediately adjacent to the K183 cross-linking site resulted in slow spontaneous disulfide bond formation in the procapsids without perturbing capsid integrity, thus suggesting flexibility within the loop region and close proximity between neighboring loop regions. To build a detailed structure model, we have predicted the secondary structure elements of the P22 coat protein, and attempted to thread the prediction onto identified helical elements of cryoEM 3D reconstruction. In this model, the loop regions where chemical cross-linkings occurred correspond to the extra density (ED) regions which protrude upward from the outside of the capsids and face one another around the symmetry axes.  相似文献   

9.
The lysine residues implicated in the gene 5 protein association sites   总被引:2,自引:0,他引:2  
Gene 5 protein, a DNA unwinding protein encoded by the bacteriophage fd, is self-associative in presence of DNA or oligonucleotides. The lysine residues implicated in the protein-protein binding domains have been identified after modification with acetimidate by means of peptide and amino acid analyses. These residues are Lys-7 and Lys-69.  相似文献   

10.
(a) Bacteriophage fd is a filamentous virus that has previously been well characterized. (b) Earlier work using point mutagenesis indicated that a lysine residue at position 48 in the major coat protein plays a crucial role in interacting with the DNA and governing the assembly into an intact virion. (c) In this study the sedimentation properties (sedimentation velocity and equilibrium) of wild-type fd and two mutants substituted at lysine-48 (K48Q and K48A) were compared. (d) Both mutants are similar to each other [Mr (19.5 ± 1.5) × 106] but somewhat bigger than the wild-type [Mr (15.1 ± 1.5) × 106]. The value for the wild-type is consistent with earlier published values. (e) By combining these data with sedimentation coefficient data, it is possible to compare the contour lengths and relative flexibilities of the mutants with those of the wild-type virion. (f) The mutants are shown hydrodynamically to have larger contour lengths (as also observed by electron microscopy): the ~20% difference in values obtained assuming rigid particle hydrodynamics with those obtained from electron microscopy is strongly suggestive of some difference in flexibility between the wild-type and mutants.  相似文献   

11.
The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and neutron diffraction, the structure of its membrane-bound form, and the structure of fd coat protein. These structural comparisons provide insights into several biological properties, differences between class I and class II filamentous bacteriophages, and the assembly process. The six N-terminal amino acid residues adopt an unusual "double hook" conformation on the outside of the bacteriophage particle. The solid-state NMR results indicate that at 30 degrees C, some of the coat protein subunits assume a single, fully structured conformation, and some have a few mobile residues that provide a break between two helical segments, in agreement with structural models from X-ray fiber and neutron diffraction, respectively. The atomic resolution structure determined by solid-state NMR for residues 7-14 and 18-46, which excludes the N-terminal double hook and the break between the helical segments, but encompasses more than 80% of the backbone including the distinct kink at residue 29, agrees with that determined by X-ray fiber diffraction with an RMSD value of 2.0 A. The symmetry and distance constraints determined by X-ray fiber and neutron diffraction enable the construction of an accurate model of the bacteriophage particle from the coordinates of the coat protein monomers.  相似文献   

12.
beta protein from bacteriophage lambda promotes a single-strand annealing reaction that is central to Red-mediated recombination at double-strand DNA breaks and chromosomal ends. beta protein binds most tightly to an intermediate of annealing formed by the sequential addition of two complementary oligonucleotides. Here we have characterized the domain structure of beta protein in the presence and absence of DNA using limited proteolysis. Residues 1-130 form an N-terminal "core" domain that is resistant to proteases in the absence of DNA, residues 131-177 form a central region with enhanced resistance to proteases upon DNA complex formation, and the C-terminal residues 178-261 of beta protein are sensitive to proteases in both the presence and absence of DNA. We probed the DNA binding regions of beta protein further using biotinylation of lysine residues and mass spectrometry. Several lysine residues within the first 177 residues of beta protein are protected from biotinylation in the DNA complex, whereas none of the lysine residues in the C-terminal portion are protected. The results lead to a model for the domain structure and DNA binding of beta protein in which a stable N-terminal core and a more flexible central domain come together to bind DNA, whereas a C-terminal tail remains disordered. A fragment consisting of residues 1-177 of beta protein maintains normal binding to sequentially added complementary oligonucleotides and has significantly enhanced binding to single-strand DNA.  相似文献   

13.
The Ogg1 protein of Saccharomyces cerevisiae belongs to a family of DNA glycosylases and apurinic/apyrimidinic site (AP) lyases, the signature of which is the alpha-helix-hairpin-alpha-helix-Gly/Pro-Asp (HhH-GPD) active site motif together with a conserved catalytic lysine residue, to which we refer as the HhH-GPD/K family. In the yeast Ogg1 protein, yOgg1, the HhH-GPD/K motif spans residues 225-260 and the conserved lysine is K241. In this study, we have purified the K241R and K241Q mutant proteins and compared their catalytic and DNA binding properties to that of the wild-type yOgg1. The results show that the K241R mutation greatly impairs both the DNA glycosylase and the AP lyase activities of yOgg1. Specificity constants for cleavage of a 34mer oligodeoxyribonucleotide containing a 7,8-dihydro-8-oxoguanine (8-OxoG) paired with a cytosine, [8-OxoG.C], are 56 x 10(-)(3) and 5 x 10(-)(3) min(-)(1) nM(-)(1) for the wild-type and the K241R protein, respectively. On the other hand, the K241Q mutation abolishes the DNA glycosylase and AP lyase activities of yOgg1. In contrast, the K241R and K241Q proteins have conserved wild-type DNA binding properties. K(dapp) values for binding of [8-OxoG.C] are 6.9, 7.4, and 4.8 nM for the wild-type, K241R, and K241Q proteins, respectively. The results also show that AP site analogues such as 1, 3-propanediol (Pr), tetrahydrofuran (F), or cyclopentanol (Cy) are not substrates but constitute good inhibitors of the wild-type yOgg1. Therefore, we have used a 59mer [Pr.C] duplex to further analyze the DNA binding properties of the wild-type, K241R, and K241Q proteins. Hydroxyl radical footprints of the wild-type yOgg1 show strong protection of six nucleotides centered around the Pr lesion in the damaged strand. On the complementary strand, only the cytosine placed opposite Pr was strongly protected. The same footprints were observed with the K241R and K241Q proteins, confirming their wild-type DNA binding properties. These results indicate that the K241Q mutant protein can be used to study interactions between yOgg1 and DNA containing metabolizable substrates such as 8-OxoG or an AP site.  相似文献   

14.
Nitrogenase binds and hydrolyzes 2MgATP yielding 2MgADP and 2Pi for each electron that is transferred from the iron protein to the MoFe protein. The iron protein alone binds but does not hydrolyze 2MgATP or 2MgADP and the binding of these nucleotides is competitive. Iron protein amino acid sequences all contain a putatitive mononucleotide-binding region similar to a region found in other mononucleotide-binding proteins. To examine the role of this region in MgATP interaction, we have substituted glutamine and proline for conserved lysine 15. The amino acid substitutions, K15Q and K15P, both yielded a non-N2-fixing phenotype when the genes coding for them were substituted into the Azotobacter vinelandii chromosome in place of the wild-type gene. The iron protein from the K15Q mutant was purified to homogeneity, whereas the protein from the K15P mutant could not be purified in its native form. Unlike wild-type iron protein, the purified K15Q iron protein showed no acetylene reduction, H2 evolution, or ATP hydrolysis activities when complemented with wild-type MoFe protein. The K15Q iron protein and the normal iron protein had a similar total iron content and both proteins showed the characteristic rhombic EPR signal resulting from the reduced state of the single 4Fe-4S cluster bridging the two subunits. Unlike the wild-type iron protein, addition of MgATP to the K15Q iron protein did not result in the perturbation necessary to change the EPR signal of its 4Fe-4S center from a rhombic to an axial line shape. Also unlike the wild-type iron protein, addition of MgATP to K15Q iron protein in the presence of the iron chelator, alpha,alpha'-dipyridyl, did not result in a time-dependent transfer of iron to the chelator. Thus, even though the K15Q iron protein contains a normal 4Fe-4S center, it does not respond to MgATP like the wild-type protein. Examination of the ability of the K15Q iron protein to bind MgADP showed no change from the wild-type iron protein, but its ability to bind MgATP decreased to 35% of the wild-type protein. Thus, in A. vinelandii iron protein, lysine 15 is not needed for interaction with MgADP but is involved in the binding of ATP, presumably through charge-charge interaction with the gamma-phosphate. Based on the above data, this lysine appears to be essential for the MgATP induced conformational change of wild-type iron protein that is required for activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

16.
Ligand-targeted anticancer therapeutics represent an opportunity for the selective and efficient delivery of drugs to tumours. The chemical coupling of ligands to drugs or drug carrier systems is, however, often hampered by the presence of multiple reactive groups within the ligand, for example, epsilon-NH(2) groups in lysine side chains. In this paper, we describe the isolation by phage display of human epidermal growth factor (EGF) variants without lysine and a reduced number of arginine residues. The selection on A431 carcinoma cells also revealed that R41 is indispensable for EGF binding activity as all EGF variants contained an arginine residue at this position. One EGF variant (EGFm1) with K28Q, R45S, K48S and R53S mutations was expressed in bacteria and showed an identical binding activity as wild-type EGF. EGFm1 could be labelled with fluorescein isothiocyanate demonstrating the accessibility of the N-terminal amino group for coupling reagents. Furthermore, coupling of EGFm1 to PEGylated liposomes resulted in target cell-specific binding and internalization of the liposomes. These human EGF variants should be advantageous for the generation of anticancer therapeutics targeting the EGF receptor, which is overexpressed by a wide variety of different tumours.  相似文献   

17.
Structural interpretation of the Raman spectra of filamentous bacteriophages is dependent upon reliable assignments for the numerous Raman vibrational bands contributed from coat protein and packaged DNA of the virion. To establish unambiguous assignments and facilitate structural conclusions derived from them, we have initiated a systematic study of filamentous bacteriophage Ff (fd, f1, M13) incorporating protein subunits with specifically deuterated amino-acid side chains. Here, we report and interpret the Raman spectra of fd virions which incorporate: (a) a single deuterio-tryptophan residue per coat protomer [fd(Wd5)], (b) ten deuterio-alanines per protomer [fd(10Ad3)], and (c) both deuterio-tryptophan and deuterio-alanine [fd(Wd5 + 10Ad3)]. The unambiguous assignment of coat protein Raman bands in normal and deuterated isotopomers of fd establishes the validity of earlier empirical assignments of many key Raman markers, including those of packaged ssDNA (Thomas et al., 1988). Present results confirm that deoxyguanosine residues of the packaged ssDNA molecule depart from the usual C2'-endo/anti conformation characteristic of protein-free DNA in aqueous solution, although C2'-endo/anti conformers of thymidine are not excluded by the data. The combined results obtained here on normal fd, and on fd incorporating deuterio-tryptophan [fd(Wd5) and fd(Wd5 + 10Ad3)], show also that the microenvironment of the single tryptophan residue per coat protomer (W26) can be clearly deduced as follows: (a) The indole 1-NH donor group of each protomer in fd forms a moderately strong hydrogen bond, most likely to a hydroxyl oxygen acceptor. (b) The planar indole ring exists in a hydrophilic environment. (c) The torsion angle describing the orientation of the indole ring (C3-C2 linkage) with respect to the side-chain (C alpha-C beta bond) is unusually large, i.e., magnitude of X2,1 approximately 120 degrees. With respect to alanine isotopomers, the present results show that alanine residues, and possibly other methyl-containing side chains, are significant contributors to the fd Raman spectrum. The present study provides new information on protomer side chains of fd and demonstrates a Raman methodology which should be generally useful for investigating single-site interactions and macromolecular conformations in other nucleoprotein assemblies.  相似文献   

18.
In most of homeodomain–DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1–DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein–DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein–DNA complexes. The order of stability of protein–DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein–DNA complexes. Among specific protein–DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.  相似文献   

19.
We have reported variants of the M13 bacteriophage major coat protein (P8) that enable high copy display of monomeric and oligomeric proteins, such as human growth hormone and steptavidin, on the surface of phage particles (Sidhu SS, Weiss GA, Wells JA. 2000. High copy display of large proteins on phage for functional selections. J Mol Biol 296:487-495). Here, we explore how an optimized P8 variant (opti-P8) could evolve the ability to efficiently display a protein fused to its N-terminus. Reversion of individual opti-P8 residues back to the wild-type P8 residue identifies a limited set of hydrophobic residues responsible for the high copy protein display. These hydrophobic amino acids bracket a conserved hydrophobic face on the P8 alpha helix thought to be in contact with the phage coat. Mutations additively combine to promote high copy protein display, which was further enhanced by optimization of the linker between the phage coat and the fusion protein. These data are consistent with a model in which protein display-enhancing mutations allow for better packing of the fusion protein into the phage coat. The high tolerance for phage coat protein mutations observed here suggests that filamentous phage coat proteins could readily evolve new capabilities.  相似文献   

20.
The gene 5 protein (g5p) of the bacteriophage Pf1 is a 144 residue single-stranded (ss) DNA binding protein involved in replication and packaging of the viral DNA. Compared to the gene 5 proteins of other filamentous bacteriophages, such as fd, the Pf1 g5p has an additional C-terminal sequence ( approximately 40 residues) with an unusual amino acid composition, being particularly rich in proline, glutamine and alanine. This C-terminal sequence is susceptible to limited proteolysis, in contrast to the globular N-terminal domain of the protein. The C-terminal sequence has been shown to play a role in the stabilisation of the protein-ssDNA complex. In the present study, the DNA sequence corresponding to the 38 amino acid residue C-terminal peptide has been cloned and expressed. A variety of biophysical techniques suggest that this peptide has a largely irregular conformation in solution, in contrast to the N-terminal globular domain that is principally beta-sheet. However, circular dichroism (CD) spectroscopy indicates that the peptide can be induced to form a structure that resembles a left-handed polyproline-like (P(II)) helix, suggesting that the C-terminal tail of the protein may adopt a more structured conformation in the appropriate physiological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号