首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.  相似文献   

2.
To predict selenium cycling in sediments, it is crucial to identify and quantify the processes leading to selenium sequestration in sediments. More specifically, it is essential to obtain environmentally-relevant kinetic parameters for selenium reduction and information on how they spatially vary in sediments. The Salton Sea (California, USA) is an ideal model system to examine selenium processes in sediments due to its semi-enclosed conditions and increasing selenium concentration over the last century. Selenium enters the Salton Sea mainly as selenate and might be sequestered in the sediment through microbial reduction. To determine the potential selenium sequestration of Salton Sea littoral sediments and which sediment properties are controlling selenate reduction kinetics, we determined the centimeter-scale vertical distribution of potential selenate reduction rates and apparent kinetic parameters (maximum selenate reduction rates, Vmax, and selenate half-saturation concentration, Km) using flow-through reactor (FTR) experiments. We compared sediments from two littoral sites (South and North) and four depth intervals (0–2, 2–4, 4–6 and 6–8 cm). Furthermore, we characterized the selenium fractions in the sediment recovered from the FTR experiments to identify the processes leading to the sequestration of selenium. Our results reveal higher potential for selenium reduction and sequestration in the topmost sediment (0–2 cm) suggesting that microorganisms inhabiting surface sediment are well adapted to reduce selenate entering the Salton Sea. As apparent Km values (103–2144 µM) exceed the average selenium concentration in the overlying water (6–25 nM), in situ selenate reduction is limited by the low availability of selenate and the resident selenate-reducing microorganisms operate well below their Vmax (11 and 43 nmol cm?3 h?1). Selenium speciation after FTR experiments confirms the primary sequestration of reduced biomass-associated and elemental selenium (68–99% of total selenium) in the sediment. Further, the absence of correlation between the tested sediment physical (porosity, bulk density, clay content), chemical (Corg, Ntot, total selenium content) and biological characteristics (abundance of culturable selenate-reducers) with the kinetic parameters of selenate reduction indicates that these sediment characteristics cannot be used as predictors of apparent Vmax or Km. Conclusively, microbial selenate reduction is an important, if not the primary process, leading to the sequestration of reduced selenium in the Salton Sea sediments and making the surficial Salton Sea sediments an important selenium sink.  相似文献   

3.
The preparation ofΔ 1, 4 , 17-dione fromΔ 4 , 17-dione with the aid ofFusarium lateritium 403 is described, the yield being 80%, referred to the original steroid. The undesirable 1-dehydrotestololactone is formed under the given conditions only in traces. If progesterone was used as the starting steroid the yield of the undesirable 1-dehydrotestololactone is 40%, referred to the progesterone used. Dehydroepiandrosterone was not transformed by theFusarium lateritium strain to steroid metabolites. During the preparation of 1-dehydrotestosterone fromΔ 4 -androstene-3, 17-dione, using two successive microbial procedures (dehydrogenation of the A ring in position 1–2 and reduction of the keto group at C17 giving rise to the corresponding 17β-hydroxy derivative), the isolation yield was 55–60%, referred to the starting steroid.  相似文献   

4.
Methane production by microbial communities from Lake Baikal bottom sediments with different chemical composition of pore water was studied. Methane production was more active in the media supplemented with H2: CO2 and H2 + CH3COONa, rather than on media with acetate as the sole source of carbon and energy. Addition of methanol stimulated methane production only in the case of microbial communities from upper silts. Ability of the communities to produce methane correlated reliably with the concentrations of the NO3–, SO42?, Cl, and CH3COO ions in the pore water of the relevant sediments. Cultivation of communities from the mud volcano sediments resulted in development of methanogenic archaea of the family Methanocellaсеае in the media supplemented with H2: CO2 and H2 + CH3COONa, while methanogenic archaea in the communities cultivated without additional substrates belonged to the genera Methanoregula, Methanobacterium, and Methanosaeta.  相似文献   

5.
The rates of microbial processes and phylogenetic diversity of the microorganisms responsible for organic matter production and decomposition in the benthic communities and bottom sediments of the rivers Solyanka, Lantsug, Khara, Chernavka, and Bol’shaya Smorogda (Lake Elton area, Volgograd oblast, Russia) were studied. The biomass and primary production of cyano–bacterial communities varied significantly within the ranges of 20–903 mg Chl a/m2 and 0.2–21 mg C/(m2 h), respectively. Depending on the season, the share of anoxygenic CO2 fixation varied from 20% to the values comparable to the rate of oxygenic photosynthesis. The total heterotrophic activity of microbial communities determined as the rate of dark CO2 assimilation varied from 31 to 750 μmol/(dm3 day) in the mats and from 3 to 137 μmol/(dm3 day) in the sediments. The rates of sulfate reduction and hydrogenotrophic methanogenesis varied from 10 to 2621 μmol S/dm3 day) and from 1.5 to 323 nmol CH4/(dm3 day), respectively. High-throughput sequencing of the 16S rRNA genes in cyano–bacterial mats revealed microorganisms belonging to 20 phyla, with the sequences of Cyanobacteria, Proteobacteria, and Bacteroidetes being the most numerous.  相似文献   

6.
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.  相似文献   

7.
The number and diversity of culturable microorganisms involved in sulfur oxidation and sulfate reduction were investigated in the oxidized sediments of gold mine tailings, Kuznetsk Basin, Russia. The sediments had a low pH (2.4–2.8), high SO 4 2? content (up to 22 g/l), and high concentrations of dissolved metals. The arsenic content was as high as 1.9 g/l. Bacterial phylogeny in microcosms was investigated by amplification of 16S rRNA gene fragments with subsequent denaturing gradient gel electrophoresis (DGGE). Spore-forming bacteria Desulfosporosinus were the only bacteria revealed for which the capacity for dissimilatory sulfate reduction is known. Strain Desulfosporosinus sp. DB was obtained in pure culture, and it was phylogenetically remote from other cultured and uncultured members of the genus. No sulfate-reducing members of the Deltaproteobacteria were detected. The Firmicutes members were the most numerous phylotypes in the microcosms, including a separate cluster with the similarity to Pelotomaculum not exceeding 94%. Acidithiobacillus ferrooxidans and A. caldus were found in anaerobic and microaerophilic microcosms. The number of sulfate reducers did not exceed 9.5 × 102 cells/ml.  相似文献   

8.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

9.
The concentration of HCO 3 ? , pH, pO2, sO2, and pCO2 were measured in the total umbilical blood of neonates born in January–February (n = 169) and June–July (n = 172). The former group displayed higher values of pH, pO2, and sO2, whereas pCO2 and the concentration of HCO 3 ? were higher in the latter group. There was a 70–80% coincidence of the variants in both groups (the regions of statistical transgressions); seasonal factors were responsible for 20–30% of the differences.  相似文献   

10.
This study assessed the microbial diversity, activity, and composition of methane-oxidizing communities of a subarctic wetland in Russia with mosaic cover of Sphagnum mosses and lichens of the genera Cladonia and Cetraria. Potential methane-oxidizing activity of peat sampled from lichen-dominated wetland sites was higher than that in the sites dominated by Sphagnum mosses. In peat from lichen-dominated sites, major bacterial groups identified by high-throughput sequencing of the 16S rRNA genes were the Acidobacteria (35.4–41.2% of total 16S rRNA gene reads), Alphaproteobacteria (19.1–24.2%), Gammaproteobacteria (7.9–11.1%), Actinobacteria (5.5–13.2%), Planctomycetes (7.2–9.5%), and Verrucomicrobia (5.1–9.5%). The distinctive feature of this community was high proportion of Subdivision 2 Acidobacteria, which are not characteristic for boreal Sphagnum peat bogs. Methanotrophic community composition was determined by molecular analysis of the pmoA gene encoding particulate methane monooxygenase. Most (~80%) of all pmoA gene fragments revealed in peat from lichen-dominated sites belonged to the phylogenetic lineage represented by a microaerobic spiral-shaped methanotroph, “Candidatus Methylospira mobilis”. Members of the genus Methylocystis, which are typical inhabitants of boreal Sphagnum peat bogs, represented only a minor group of indigenous methanotrophs. The specific feature of a methanotrophic community in peat from lichen-dominated sites was the presence of uncultivated USCα (Upland Soil Cluster alpha) methanotrophs, which are typical for acidic upland soils showing atmospheric methane oxidation. The methanotrophic community composition in lichen-dominated sites of a tundra wetland, therefore, was markedly different from that in boreal Sphagnum peat bogs.  相似文献   

11.
Aerobic methanotrophs from the coastal thermal springs of Lake Baikal   总被引:1,自引:0,他引:1  
The number, activity, and diversity of aerobic methanotrophic bacteria in the sediments of three coastal thermal springs of Lake Baikal were analyzed. The average number of methanotrophs was 103–104 cells per 1 cm3 of sediment. The highest number of methanotrophs (108 cells/cm3 of silt) and the highest potential rate of methane uptake [7.7 nmol CH4/(cm3 day)] were revealed in sediments from the Sukhaya thermal spring. The methods of molecular ecology (DGGE, FISH, analysis of pmoA gene fragments) showed the predominance in most enrichment cultures of methanotrophs of type II, i.e., of the genera Methylocystis and Methylosinus. In only one enrichment culture (from the Sukhaya thermal spring), a type I methanotroph was revealed; its similarity to Methylococcus capsulatus Bath did not exceed 80%. These results demonstrate a widespread occurrence and high activity of the aerobic methanotrophic community in the coastal thermal springs of Lake Baikal.  相似文献   

12.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

13.
Massive parallel sequencing (the Roche 454 platform) of the 16S rRNA gene fragments was used to investigate microbial diversity in the sediments of the Posolsk Bank cold methane seep. Bacterial communities from all sediment horizons were found to contain members of the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Nitrospirae, Chloroflexi, Proteobacteria, and the candidate phyla Aminicenantes (OP8) and Atribacteria (OP9). Among Bacteria, members of the Chloroflexi and Proteobacteria were the most numerous (42 and 46%, respectively). Among archaea, the Thaumarchaeota predominated in the upper sediment layer (40.1%), while Bathyarchaeota (54.2%) and Euryarchaeota (95%) were predominant at 70 and 140 cm, respectively. Specific migration pathways of fluid flows circulating in the zone of gas hydrate stability (400 m) may be responsible for considerable numbers of the sequences of Chloroflexi, Acidobacteria, and the candidate phyla Aminicenantes and Atribacteria in the upper sediment layers and of the Deinococcus-Thermus phylum in deep bottom sediments.  相似文献   

14.
Present study revealed the presence of 16 earthworm species belonging to 11 genera and four families viz. Megascolecidae (Amynthus alexandri, Metaphire houlleti, Lampito mauritii, Kanchuria sp1, Perionyx excavatus), Octochaetidae (Eutyphoeus gigas, Eutyphoeus comillahnus, Eutyphoeus orientalis, Octochaetona beatrix, Dichogaster bolaui, Lennogaster chittagongensis, Lennogaster yeicus), Moniligastridae (Drawida papillifer papillifer, Drawida assamensis, Drawida nepalensis) and Glossoscolecidae (Pontoscolex corethrurus) in the soils of five bamboo species [Bambusa balcooa (Sil Barak), Melocanna baccifera (Muli), Bambusa polumorpha (Bari), Bambus cacharensis (Bom) and Bambus bambus (Katabarak)] of West-Tripura. While four earthworm species viz. Metaphire houlleti, Drawida assamensis, Drawida papillifer papillifer and Pontoscolex corethrurus were common to all species of bamboo plantations, the rest showed restricted distribution. Among the earthworm species 4 were exotic (Amynthus alexandri, Metaphire houlleti, Dichogaster bolaui and Pontoscolex corethrurus) and the others were native to the Indian sub-continent. In general, earthworms under the bamboo plantations occurred within temperature range of 21.6 °C–28.0 °C, pH 4.0–7.0, organic matter 0.56–5.99 %, moisture 9.6–31.7 %, water holding capacity 14.6–43.9 % and bulk density 0.7–1.8 g cm?3. The average density and biomass of the earthworms in the studied places were 108 ind m?2 and 44 g m?2 respectively. Earthworm diversity, dominance and evenness indices showed the values 1.00, 0.47 and 0.70 respectively. Earthworm density and biomass showed a negative correlation with temperature whereas those had a strong positive correlation with pH, moisture and organic matter of the soils.  相似文献   

15.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

16.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

17.
A Gram-positive, aerobic, non-motile, rod-shapeds, catalase-positive, and oxidase-negative strain, designated Y49T, was isolated from sewage collected from Jilin Agricultural University, China. It grew at 20–40°C (optimum at 30°C), at pH 6.0–8.0 (optimum at 7.0) and at 0–1.0% sodium chloride (optimum at 0%). The major isoprenoid quinone was menaquinone-8 (MK-8) and the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, four unidentified lipids, and two unidentified aminolipids. The peptidoglycan was meso-diaminopimelic acid. The cell-wall sugars were galactose, arabinose, and glucose. The fatty acids were C9:0, C16:0, C16:1 ω9c, C17:1 ω9c, C18:3 ω6c (6,9,12), C18:1 ω9c, and C18:0. The DNA G+C content was 51.4 mol%. Based on the 16S rRNA gene sequence analysis, the nearest phylogenetic neighbors of strain Y49T were Corynebacterium efficiens DSM 44549T (97.5%), Corynebacterium callunae DSM 20147T (97.2%), Corynebacterium deserti GIMN 1.010T (96.8%), Corynebacterium glutamicum ATCC 13032T (96.4%), and other species belonging to this genus (92.3–95.4%). The DNA-DNA relatedness value between strain Y49T and C. efficiens DSM 44549T, C. callunae DSM 20147T, C. deserti GIMN1.010T, and C. glutamicum ATCC 13032T was 25.5±2.0%, 21.1±1.0%, 16.5±0.5%, and 13.5±0.9%, respectively. Based on the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain Y49T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium defluvii sp nov. is proposed. The type strain is Y49T (= KCTC 39731T =CGMCC 1.15506T).  相似文献   

18.
Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3? in sediments with chironomid larvae and by NO3? produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.  相似文献   

19.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

20.
A Gram-stain negative, rod-shaped, non-motile, strictly aerobic bacterium HK-28T was isolated from a mangrove sediment sample in Haikou city, Hainan Province, China. Strain HK-28T was able to grow at 10–45 °C (optimum 25–30 °C), pH 5.0–8.5 (optimum 6.0–7.0) and 0.5–12.0% (w/v) NaCl (optimum 1.0–3.0%, w/v). The major cellular fatty acids were C16:0, Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c), Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0, C12:0 3-OH and C17:1ω8c. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, two unidentified glycolipid, an unidentified glycophospholipid, an unidentified aminolipid and an unidentified lipid. The DNA G+C content was 50.2 mol%. Accoroding to 16S rRNA gene sequence similarities, strain HK-28T shared 97.1 and 96.7% sequence similarities to the validly named species Gallaecimonas xiamenensis MCCC 1A01354T and Gallaecimonas pentaromativorans MCCC 1A06435T, respectively, and shared lower sequence similarities (<?92.0%) to all other genera. Phylogenetic analysis showed strain HK-28T was clustered with G. pentaromativorans MCCC 1A06435T and G. xiamenensis MCCC 1A01354T. Strain HK-28T showed low DNA–DNA relatedness with G. xiamenensis MCCC 1A01354T (28.3?±?1.5%) and G. pentaromativorans MCCC 1A06435T (25.2?±?2.4%). On the basis of phenotypic, chemotaxonomic and genotypic characteristics, strain HK-28T is considered to represent a novel species in the genus Gallaecimonas, for which the name Gallaecimonas mangrovi sp. nov. is proposed. The type strain is HK-28T (=?KCTC 62177T?=?MCCC 1K03441).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号