首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.  相似文献   

2.
Complex proteoforms contain various primary structural alterations resulting from variations in genes, RNA, and proteins. Top‐down mass spectrometry is commonly used for analyzing complex proteoforms because it provides whole sequence information of the proteoforms. Proteoform identification by top‐down mass spectral database search is a challenging computational problem because the types and/or locations of some alterations in target proteoforms are in general unknown. Although spectral alignment and mass graph alignment algorithms have been proposed for identifying proteoforms with unknown alterations, they are extremely slow to align millions of spectra against tens of thousands of protein sequences in high throughput proteome level analyses. Many software tools in this area combine efficient protein sequence filtering algorithms and spectral alignment algorithms to speed up database search. As a result, the performance of these tools heavily relies on the sensitivity and efficiency of their filtering algorithms. Here, we propose two efficient approximate spectrum‐based filtering algorithms for proteoform identification. We evaluated the performances of the proposed algorithms and four existing ones on simulated and real top‐down mass spectrometry data sets. Experiments showed that the proposed algorithms outperformed the existing ones for complex proteoform identification. In addition, combining the proposed filtering algorithms and mass graph alignment algorithms identified many proteoforms missed by ProSightPC in proteome‐level proteoform analyses.  相似文献   

3.
4.
Post‐translational modifications (PTMs) of histones are important epigenetic regulatory mechanisms that are often dysregulated in cancer. We employ middle‐down proteomics to investigate the PTMs and proteoforms of histone H4 during cell cycle progression. We use pH gradient weak cation exchange‐hydrophilic interaction liquid chromatography (WCX‐HILIC) for on‐line liquid chromatography‐mass spectrometry analysis to separate and analyze the proteoforms of histone H4. This procedure provides enhanced separation of proteoforms, including positional isomers, and simplifies downstream data analysis. We use ultrahigh mass accuracy and resolution Fourier transform‐ion cyclotron resonance (FT‐ICR) mass spectrometer to unambiguously distinguish between acetylation and tri‐methylation (?m = 0.036 Da). In total, we identify and quantify 233 proteoforms of histone H4 in two breast cancer cell lines. We observe significant increases in S1 phosphorylation during mitosis, implicating an important role in mitotic chromatin condensation. A decrease of K20 unmodified proteoforms is observed as the cell cycle progresses, corresponding to an increase of K20 mono‐ and di‐methylation. Acetylation at K5, K8, K12, and K16 declines as cells traverse from S phase to mitosis, suggesting cell cycle–dependence and an important role during chromatin replication and condensation. These new insights into the epigenetics of the cell cycle may provide new diagnostic and prognostic biomarkers.  相似文献   

5.
Fc-fusion proteins are highly complex molecules, difficult to manufacture at scale. In this work, undesired proteoforms were detected during the manufacture of a therapeutic fusion protein produced in CHO cells. These species were characterized using gel electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry leading to the identification of low molecular weight proteoforms presenting low N- and O-glycan site occupancy, as well as a low sialylation content. Upstream process parameters were investigated, and fusion protein quality was shown to be linked to the sodium chloride content of the medium. A mitigation strategy was developed to avoid formation of unwanted glyco-variants, resulting in an increased yield of highly glycosylated Fc-fusion protein. The effect of sodium chloride was shown to be independent of the osmolality increase and was hypothesized to be linked to a modulation of Golgi acidity, which is required for the correct localization and function of glycosyltransferases. Altogether, this study highlights the importance of the salt balance in cell culture media used to produce highly sialylated and occupied glycoproteins, helping to maximize the yield and increase robustness of processes aiming at producing biopharmaceutical complex therapeutic molecules.  相似文献   

6.
Proteolytic processing shapes cellular interactions with the environment. As a pathway of unconventional protein secretion, ectodomain shedding releases soluble proteoforms of membrane-anchored proteins. This can trigger subsequent cleavage within the membrane stub and the release of additional soluble fragments to intra- and extracellular environments. Distinct membrane-bound proteases, or sheddases, may cleave the same membrane proteins at different sites. Determination of these precise cleavage sites is important, as differently processed proteoforms may exhibit distinct physiological properties and execute antagonistic paracrine and endocrine signaling functions. Conventional quantitative proteomic approaches reliably identify shed proteoforms, but typically not their termini and are thus not able distinguish between functionally different proteoforms differing only by a few amino acids. Dedicated positional proteomics overcomes this challenge and enables proteome-wide identification of protein N- and C-termini. Here, we review positional proteomics techniques, summarize their application to ectodomain shedding and discuss current challenges and developments.  相似文献   

7.
Today, proteomics usually compares clinical samples by use of bottom-up profiling with high resolution mass spectrometry, where all protein products of a single gene are considered as an integral whole. At the same time, proteomics of proteoforms, which considers the variety of protein species, offers the potential to discover valuable biomarkers. Proteoforms are protein species that arise as a consequence of genetic polymorphisms, alternative splicing, post-translational modifications and other less-explored molecular events. The comprehensive observation of proteoforms has been an exclusive privilege of top-down proteomics. Here, we review the possibilities of a bottom-up approach to address the microheterogeneity of the human proteome. Special focus is given to shotgun proteomics and structure-based bioinformatics as a source of hypothetical proteoforms, which can potentially be verified by targeted mass spectrometry to determine the relevance of proteoforms to diseases.  相似文献   

8.
9.
10.
Objective: Proteins can exist as multiple proteoforms in vivo that can have important roles in physiological and pathological states.

Methods: We present the development and characterization of mass spectrometric immunoassay (MSIA) for quantitative determination of serum amyloid A (SAA) proteoforms.

Results: Intra- and inter-day precision revealed CVs <10%. Against existing SAA ELISA, the developed MSIA showed good correlation according to the Altman–Bland plot. Individual concentrations of the SAA proteoforms across a cohort of 170 samples revealed 7 diverse SAA polymorphic types and 12 different proteoforms.

Conclusion: The new SAA MSIA enables parallel analysis of SAA polymorphisms and quantification of all expressed SAA proteoforms, in a high-throughput and time-efficient manner.  相似文献   


11.
12.
Introduction: Only about dozen mass spectrometry (MS) protein tests have been translated into clinical laboratories since the MALDI and ESI approaches were developed thirty years ago. While the cost and complexity of these assays are important factors impeding their clinical adoption, new content generated via proteoforms detection could provide the impetus for further development and translation.

Areas covered: Provided here are several examples of MS-based protein assays capable of detecting proteoforms, including those for B-type natriuretic peptide (BNP) and parathyroid hormone (PTH). The evidence suggests that the ability to detect proteoforms is not enough to drive the clinical adoption of the MS-based tests – clinical utility of those proteoforms needs to be demonstrated first. Along those lines, recent efforts to discover, clinically validate, and initiate translation of novel proteoform biomarkers such as those of apolipoprotein C-III will be discussed.

Expert commentary: MS protein tests face a challenging future. Both the sample preparation steps and the MS platforms need to be simplified to bring the cost per test down, and then the new content brought by the detection of proteoforms will drive the proliferation of these MS tests – first in clinical utility studies and then for routine diagnostics.  相似文献   


13.
To understand the impact of alternative translation initiation on a proteome, we performed a proteome‐wide study on protein turnover using positional proteomics and ribosome profiling to distinguish between N‐terminal proteoforms of individual genes. By combining pulsed SILAC with N‐terminal COFRADIC, we monitored the stability of 1,941 human N‐terminal proteoforms, including 147 N‐terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine. N‐terminally truncated proteoforms were less abundant than canonical proteoforms and often displayed altered stabilities, likely attributed to individual protein characteristics, including intrinsic disorder, but independent of N‐terminal amino acid identity or truncation length. We discovered that the removal of initiator methionine by methionine aminopeptidases reduced the stability of processed proteoforms, while susceptibility for N‐terminal acetylation did not seem to influence protein turnover rates. Taken together, our findings reveal differences in protein stability between N‐terminal proteoforms and point to a role for alternative translation initiation and co‐translational initiator methionine removal, next to alternative splicing, in the overall regulation of proteome homeostasis.  相似文献   

14.
Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained are often inaccurate. This hampers antibody validation and negatively impacts the reliability of western blot data, resulting worldwide in a considerable waste of reagents and labour. We argue that, to alleviate these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration patterns for approximately 10′000 human proteins in five commonly used cell lines. We applied a robust internal calibration of migration to determine accurate and reproducible molecular weights. This in turn allows merging replicates to increase accuracy, but also enables comparing different cell lines. Mining of the data obtained highlights structural factors that affect migration of distinct classes of proteins. When combined with peptide coverage, the data produced recapitulates known post-translational modifications and differential splicing and can be used to formulate hypotheses on new or poorly known processing events. The full information is freely accessible as a web resource through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this database will be useful to investigators worldwide for troubleshooting western blot experiments, but could also contribute to the characterization of human proteoforms.  相似文献   

15.
The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.  相似文献   

16.
It has long been understood that it is proteins, expressed and post-translationally modified, that are the primary regulators of both the fate and the function of cells. The ability to measure differences in the expression of the constellation of unique protein forms (proteoforms) with complete molecular specificity has the potential to sharply improve the return on investment for mass spectrometry-based proteomics in translational research and clinical diagnostics.  相似文献   

17.
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies  相似文献   

18.
During recent decades significant progress in studies of the molecular basis of socially significant diseases has been achieved due to introduction of high-throughput methods of genomics and proteomics. Numerous studies, performed within the global program “Human Proteome,” were aimed at identifying all possible proteins in various (including cancer) cell cultures and tissues. One of the aims was to identify socalled biomarkers—the proteins, specific for certain pathologies. However, many studies have shown that the development of the disease is not associated with appearance of new proteins, but it depends on the expression level of certain genes or specific proteoforms representing splice variants, single amino acid polymorphism (SAP) and post-translational modifications (PTM) of proteins. PTMs can play a key role in the development of pathology, because they activate various regulatory or structural proteins in most cellular processes. Among such modifications, phosphorylation appears to be the most significant PTM. This review considers methods of analysis of protein phosphorylation used in studies of the molecular basis of oncological diseases; it contains examples illustrating contribution of modified proteins directly involved in their development as well as examples of screening of such crucial PTMs in diagnostics and selection of methods for treatment.  相似文献   

19.
Food and forensic molecular identification: update and challenges   总被引:2,自引:0,他引:2  
The need for accurate and reliable methods for animal species identification has steadily increased during past decades, particularly with the recent food scares and the overall crisis of biodiversity primarily resulting from the huge ongoing illegal traffic of endangered species. A relatively new biotechnological field, known as species molecular identification, based on the amplification and analysis of DNA, offers promising solutions. Indeed, despite the fact that retrieval and analysis of DNA in processed products is a real challenge, numerous technically consistent methods are now available and allow the detection of animal species in almost any organic substrate. However, this field is currently facing a turning point and should rely more on knowledge primarily from three fundamental fields--paleogenetics, molecular evolution and systematics.  相似文献   

20.
A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post‐translational modifications. In top‐down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top‐down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号