首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray structure of the two-domain laccase (small laccase) from Streptomyces coelicolor A3(2) was solved at 2.7-Å resolution. The enzyme differs significantly from all laccases studied structurally so far. It consists of two domains and forms trimers and hence resembles the quaternary structure of nitrite reductases or ceruloplasmins more than that of large laccases. There are three trinuclear copper clusters in the enzyme localized between domains 1 and 2 of each pair of neighbor chains. In this way, a similar geometry of the active site as seen in large laccases is ensured, albeit by different arrangements of domains and protein chains. Three copper ions of type 1 lie close to one another near the surface of the central part of the trimer, and, effectively, a trimeric substrate binding site is formed in their vicinity.  相似文献   

2.
Copper-containing sites of laccases isolated from the Basidiomycetes Coriolus hirsutus and Coriolus zonatus were characterized by optical methods and EPR spectroscopy. Methods for preparation of fungal laccase derivatives free from type 2 copper ions were compared. The data of EPR spectroscopy and spectrophotometric titration of copper sites showed that only a modified method based on the use of bathocuproine as a chelator for type 2 copper yielded laccase derivatives completely free from type 2 copper. The original enzymes can be reconstituted from the derivatives by dialysis under anaerobic conditions, resulting in complete recovery of native conformation of the protein molecule and the structure of the copper-containing site.  相似文献   

3.
A multi-copper protein with two cupredoxin-like domains was identified from our in-house metagenomic database. The recombinant protein, mgLAC, contained four copper ions/subunits, oxidized various phenolic and non-phenolic substrates, and had spectroscopic properties similar to common laccases. X-ray structure analysis revealed a homotrimeric architecture for this enzyme, which resembles nitrite reductase (NIR). However, a difference in copper coordination was found at the domain interface. mgLAC contains a T2/T3 tri-nuclear copper cluster at this site, whereas a mononuclear T2 copper occupies this position in NIR. The trimer is thus an essential part of the architecture of two-domain multi-copper proteins, and mgLAC may be an evolutionary precursor of NIR.  相似文献   

4.
The thermodynamic parameters for reduction of the type-1 (T1) copper site in Rhus vernicifera and Trametes versicolor laccases and for the derivative of the former protein from which the type-2 copper has been selectively removed (T2D) have been determined with UV–vis spectroelectrochemistry. In all cases, the enthalpic term turns out to be the main determinant of the E o′ of the T1 site. Also the difference between the reduction potentials of the two laccases is enthalpy-based and reflects differences in the coordination features of the T1 sites and their protein environment. The T1 sites in native R. vernicifera laccase and its T2D derivative show the same E o′, as a result of compensatory differences in the reduction thermodynamics. This suggests that removal of the type-2 (T2) copper results in modification of the reduction-induced solvent reorganization effects, with no influence in the structure of the multicopper protein site. This conclusion is supported by NMR data recorded on the native, the T2D, and Hg-substituted T1 derivatives of R. vernicifera laccase, which show that the T1 and T2/T3 sites are largely noninteracting.  相似文献   

5.
Laccases and other four-copper oxidases are usually constructed of three domains: Domains one and three house the copper sites, and the second domain often helps form a substrate-binding cleft. In contrast to this arrangement, the genome of Streptomyces coelicolor was found to encode a small, four-copper oxidase that lacks the second domain. This protein is representative of a new family of enzymes--the two-domain laccases. Disruption of the corresponding gene abrogates laccase activity in the growth media. We have recombinantly expressed this enzyme, called SLAC, in Escherichia coli and characterized it. The enzyme binds four copper ions/monomer, and UV-visible absorption and EPR measurements confirm that the conserved type 1 copper site and trinuclear cluster are intact. We also report the first known paramagnetic NMR spectrum for the trinuclear copper cluster of a protein from the laccase family. The enzyme is highly stable, retaining activity as a dimer in denaturing gels after boiling and SDS treatment. The activity of the enzyme against 2,6-dimethoxyphenol (DMP) peaks at an unprecedentedly high pH (9.4), whereas the activity against ferrocyanide decreases with pH. SLAC binds negatively charged substrates more tightly than positively charged or uncharged molecules.  相似文献   

6.
The CotA laccase from the endospore coat of Bacillus subtilis has been crystallized in the presence of the non-catalytic co-oxidant 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and the structure was determined using synchrotron radiation. The binding site for this adduct is well defined and indicates how ABTS, in conjunction with laccases, could act as an oxidative mediator toward non-phenolic moieties. In addition, a dioxygen moiety is clearly defined within the solvent channel oriented toward one of the T3 copper atoms in the trinuclear center.  相似文献   

7.
Trametes villosa laccase was mutated on a tetrapeptide segment near the type 1 site. The mutations F463M and F463L were at the position corresponding to the type 1 copper axial methionine (M517) ligand in Zucchini ascorbate oxidase. The mutations E460S and A461E were near the T1 copper site. The mutated Trametes laccases were expressed in an Aspergillus oryzae host and characterized. The E460S mutation failed to produce a transformant with meaningful expression. The F463L and A461E mutations did not significantly alter the molecular and enzymological properties of the laccase. In contrast, the F463M mutation resulted in a type 1 copper site with an EPR signal intermediate between that of the wild type laccase and plastocyanin, an altered UV-visible spectrum, and a decreased redox potential (by 0.1 V). In oxidizing phenolic substrate, the mutation led to a more basic optimal pH as well as an increase in kcat and Km. These effects are attributed to a significant perturbation of the T1 copper center caused by the coordination of the axial methionine (M463) ligand.  相似文献   

8.
Laccase is a blue copper oxidase with multiple copper ions and widely distributed in higher plant and fungi. To date, numerous fungal laccases have been reported by many researchers. In present work, a new laccase gene, named CcLCC5I, from Coprinus cinereus was synthesized chemically according to the yeast bias codon and integrated into Pichia pastoris GS115 genome by electroporation. SDS-PAGE analysis showed that the recombinant laccase has a molecular mass of approximately 56.8 kDa. Its biochemical properties was carried out using substrate 2-2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was showed that the optimum pH and temperature of the laccase is 3.0 and 55 °C, respectively. Except for copper ions, most metal ions inhibited the laccase activity at a high concentration about 10 mM. Sodium sulfite can also highly inhibit laccase activity whereas EDTA had no inhibitory effect on the laccase activity. The CcLCC5I have high ability to decolor not only azo but also aryl methane dyes. The recombinant laccase decolored 44.6 % orange G, 54.8 % Crystal Violet, and 87.2 % Malachite green at about 2.6 h. The novel laccase may be a good candidate for breeding engineering strains used in the treatment of industrial effluent containing azo and aryl methane dyes.  相似文献   

9.
C H?fer  D Schlosser 《FEBS letters》1999,451(2):186-190
Fungal laccases are extracellular multinuclear copper-containing oxidases that have been proposed to be involved in ligninolysis and degradation of xenobiotics. Here, we show that an electrophoretically homogenous laccase preparation from the white rot fungus Trametes versicolor oxidized Mn2+ to Mn3+ in the presence of Na-pyrophosphate, with a Km value of 186 microM and a Vmax value of 0.11 micromol/min/mg protein at the optimal pH (5.0) and a Na-pyrophosphate concentration of 100 mM. The oxidation of Mn2+ involved concomitant reduction of the laccase type 1 copper site as usual for laccase reactions, thus providing the first evidence that laccase may directly utilize Mn2+ as a substrate.  相似文献   

10.
Laccase is a multicopper blue oxidase that couples the four-electron reduction of oxygen with the oxidation of a broad range of organic substrates, including phenols and arylamines. The enzyme is the object of intense biotechnological research, due to its employment in bioremediation of soils and water as well as in other biotechnological applications. We report here the cDNA and protein sequences, the post-translational modifications, the crystallization and X-ray structure determination of a laccase from the white-rot fungus Rigidoporus lignosus. The amino acid residues sequence deduced from cDNA clearly identified a pre-sequence of 21 residues representing the signal for extra-cellular localization. Mass spectrometry analysis performed on the salvage enzyme, confirmed the deduced sequence and precisely mapped two glycosylation sites at Asn337 and Asn435, determining the nature of the bound glycosidic moieties. The crystal structure was determined at 1.7A resolution from perfectly hemihedrally twinned crystals, by molecular replacement technique. While the overall structure closely resembled those reported for other fungal laccases, the analysis of the T2/T3 trinuclear cluster revealed an unprecedented coordination sphere for the T3 copper pair. No bridging oxygen ligand was present between the two T3 copper ions, which were no longer symmetrically coordinated. The observed structure could represent an intermediate along the process of four-electron reduction of oxygen to water taking place at the trinuclear copper cluster.  相似文献   

11.
12.
Cyathus bulleri, a ligninolytic fungus, produces a single laccase the internal peptides (3) of which bear similarity to laccases of several white rot fungi. Comparison of the total amino acid composition of this laccase with several fungal laccases indicated dissimilarity in the proportion of some basic and hydrophobic amino acids. Analysis of the circular dichroism spectrum of the protein indicated 37% alpha-helical, 26% beta-sheet and 38% random coil content which differed significantly from that in the solved structures of other laccases, which contain higher beta-sheet structures. The critical role of the carboxylic group containing amino acids was demonstrated by determining the kinetic parameters at different pH and this was confirmed by the observation that a critical Asp is strongly conserved in both Ascomycete and Basidiomycete laccases. The enzyme was denatured in the presence of a number of denaturing agents and refolded back to functional state with copper. In the folding experiments under alkaline conditions, zinc could replace copper in restoring 100% of laccase activity indicating the non-essential role of copper in this laccase. The laccase was expressed in Escherichia coli by a modification of the ligation-anchored PCR approach making it the first fungal laccase to be expressed in a bacterial host. The laccase sequence was confirmed by way of analysis of a 435 bp sequence of the insert.  相似文献   

13.
1. Laccases I, II and III were (EC 1.14.18.1) prepared from the mycelium of the ascomycete Podospora anserina. The tetrameric laccase I(mol. wt 340 000, 16 copper atoms) and the monomeric laccases II and II (mol. wt 80 000, 4 copper atoms) have been studied by optical absorption-, circular dichroism-(CD)and electron paramagnetic resonance spectroscopy (EPR). 2. The visible and near ultraviolet difference absorption spectrum, which is apparently identical for all three laccases, shows two maxima at 330 and 610 nm and a shoulder at about 725 nm. The molar extinction coefficients of these bands are 4 times larger for the tetrameric laccase I compared to the monomeric laccases II and III which show values similar to other blue copper-containing oxidases. 3. CD spectra between 300 and 730 nm of the tree laccases are similar and contain at least 5-bands in the oxidized enzyme. If the enzyme is reduced, only a band at 307 nm remains. The molar ellipticity values of these bands are 4 times larger for laccase I than the corresponding bands of laccases II and III. It is inferred that the reducible bands are associated with the Type 1 Cu-2+. 4. In all three laccases the EPR-detectable copper accounts for only about 50% of the total copper content. The 9-GHz and 35-GHz spectra, which are identical for all three laccases, consist of two components of equal intensity. One component shows a rather small copper hyperfine coupling and a small deviation from axial symmetry. It is suggested that this copper is associated with the blue chromophore in analogy to Type 1 Cu-2+ in other blue copper proteins. The other component has a broader hyperfine coupling similar to Type 2 Cu-2+ as found in other copper proteins. The assumption that the experimental spectra result from a superposition of the spectra of equal amounts of Type 1 and Type 2 Cu-2+ has been verified by computer simulation. 5. It is suggested that the copper ions which are not detected by EPR are connected to the absorption band at 330 nm and that these ions are also essential for the function of these laccases.  相似文献   

14.
The paper reports on two fungal laccases from Coriolus hirsutus and Coriolus zonatus and their type-2 copper-depleted derivatives. Temperature-induced changes of the copper centers were characterized by optical and electron paramagnetic resonance (EPR) spectroscopy, and the overall protein stability by differential scanning microcalorimetry. The intact enzymes showed highly cooperative thermal unfolding transitions at about 90 degrees C. Type-2 copper depletion led to uncoupling of the domains characterized by a different melting pattern which resolved three subtransitions. Melting curves monitored optically at 290, 340 and 610 nm showed additional transitions below thermal unfolding temperature. EPR spectra of the intact laccases showed the disintegration of the trinuclear copper cluster accompanied by loss of one of the copper ions and disappearance of the strong antiferromagnetic coupling in the type-3 site at 70 degrees C and above 70 degrees C. The copper centers of type-2 copper-depleted laccase showed reduced thermotolerance.  相似文献   

15.
The principal possibility of enzymatic oxidation of manganese ions by fungal Trametes hirsuta laccase in the presence of oxalate and tartrate ions, whereas not for plant Rhus vernicifera laccase, was demonstrated. Detailed kinetic studies of the oxidation of different enzyme substrates along with oxygen reduction by the enzymes show that in air-saturated solutions the rate of oxygen reduction by the T2/T3 cluster of laccases is fast enough not to be a readily noticeable contribution to the overall turnover rate. Indeed, the limiting step of the oxidation of high-redox potential compounds, such as chelated manganese ions, is the electron transfer from the electron donor to the T1 site of the fungal laccase.  相似文献   

16.
17.
Laccases are copper-containing enzymes used in various applications, such as textile bleaching. Several crystal structures of laccases from fungi and bacteria are available, but ascomycete types of fungal laccases (asco-laccases) have been rather unexplored, and to date only the crystal structure of Melanocarpus albomyces laccase (MaL) has been published. We have now solved the crystal structure of another asco-laccase, from Thielavia arenaria (TaLcc1), at 2.5 ? resolution. The loops near the T1 copper, forming the substrate-binding pockets of the two asco-laccases, differ to some extent, and include the amino acid thought to be responsible for catalytic proton transfer, which is Asp in TaLcc1, and Glu in MaL. In addition, the crystal structure of TaLcc1 does not have a chloride attached to the T2 copper, as observed in the crystal structure of MaL. The unique feature of TaLcc1 and MaL as compared with other laccases structures is that, in both structures, the processed C-terminus blocks the T3 solvent channel leading towards the trinuclear centre, suggesting a common functional role for this conserved 'C-terminal plug'. We propose that the asco-laccases utilize the C-terminal carboxylic group in proton transfer processes, as has been suggested for Glu498 in the CotA laccase from Bacillus subtilis. The crystal structure of TaLcc1 also shows the formation of a similar weak homodimer, as observed for MaL, that may determine the properties of these asco-laccases at high protein concentrations.  相似文献   

18.
Laccase is a polyphenol oxidase, which belongs to the family of blue multicopper oxidases. These enzymes catalyze the one-electron oxidation of four reducing-substrate molecules concomitant with the four-electron reduction of molecular oxygen to water. Laccases oxidize a broad range of substrates, preferably phenolic compounds. In the presence of mediators, fungal laccases exhibit an enlarged substrate range and are then able to oxidize compounds with a redox potential exceeding their own. Until now, only one crystal structure of a laccase in an inactive, type-2 copper-depleted form has been reported. We present here the first crystal structure of an active laccase containing a full complement of coppers, the complete polypeptide chain together with seven carbohydrate moieties. Despite the presence of all coppers in the new structure, the folds of the two laccases are quite similar. The coordination of the type-3 coppers, however, is distinctly different. The geometry of the trinuclear copper cluster in the Trametes versicolor laccase is similar to that found in the ascorbate oxidase and that of mammalian ceruloplasmin structures, suggesting a common reaction mechanism for the copper oxidation and the O(2) reduction. In contrast to most blue copper proteins, the type-1 copper in the T. versicolor laccase has no axial ligand and is only 3-fold coordinated. Previously, a modest elevation of the redox potential was attributed to the lack of an axial ligand. Based on the present structural data and sequence comparisons, a mechanism is presented to explain how laccases could tune their redox potential by as much as 200 mV.  相似文献   

19.
1. Recent magnetic susceptibility measurements on laccase (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) from the lacquer tree Rhus vernicifera showed a deviation from Curie behaviour above 50 K, which was taken as evidence for an antiferromagnetically coupled Cu(II)-Cu(II) pair in the oxidized enzyme. The magnetic susceptibility of this protein has been reinvestigated. Further measurements on laccase from the fungus Polyporus versicolor and human ceruloplasmin (iron(II):oxygen oxidoreductase, EC 1.16.3.1) are presented. 2. The magnetic susceptibility of fungal laccase and lacquer tree laccase can be accounted for by the EPR detectable copper ions in the temperature range 40--300 K. 3. If an antiferromagnetically coupled Cu(II)-Cu(II) pair exists in the laccases, then the coupling, expressed as --J, should be at least of the order of 300 cm-1, as deduced from the Curie dependence of the susceptibility and the sensitivity in our measurements. 4. If an analogy with the laccases is assumed for the EPR invisible copper in ceruloplasmin then a limiting value of the coupling may be deduced also in this case, with --J at least of the order of 200 cm-1.  相似文献   

20.
The interactions of one-electron reduced metronidazole (ArNO2.-) and O2.- with native and Type-2-copper-depleted Vietnamese- and Japanese-lacquer-tree laccases were studied in aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. On reaction with ArNO2.-, in the absence of O2, the holo- and the Type-2-copper-depleted proteins accept, with reduction of Type 1 copper, 2 and 1 reducing equivalents respectively. On reaction with O2.- of both holo- and Type-2-copper-depleted Vietnamese-lacquer-tree laccase, almost complete reduction of Type 1 copper was observed and, after completion of the reaction, some (less than 20%) reoxidation of Type 1 copper occurs. Reduction of Type 1 copper of the laccases by these one-electron donors occurs via a bimolecular step; however, the rate of reduction of Vietnamese-lacquer-tree laccase is over 10 times that of Japanese-lacquer-tree laccase. It is inferred that electrons enter the protein via Type 1 copper with, in the case of the holoprotein, subsequent rapid intramolecular transfer of 1 reducing equivalent within the protein. Furthermore it is suggested that intra-molecular electron transfer to Type 3 copper atoms is slow and, in the case of Type-2-copper-depleted protein, may not occur. This slow process may partially account for the variation of the catalytic activities of 'blue' oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号