首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation of hydrocarbons (n-tridecane, n-tricosane, n-hexacosane, model mixtures of С14–С17, С1219, and С9–С21n-alkanes, 2,2,4,4,6,8,8-heptamethylnonane, squalane, and butylcyclohexane) and their complex mixtures (hydrocarbon gas condensate, kerosene, black oil, and paraffin oil) under extremely acidic conditions (pH 2.5). When grown on hydrocarbons, the studied bacterial culture AGS10 caused a decrease in the surface and interfacial tension of the solutions (to the lowest observed values of 26.0 and 1.3 mN/m, respectively) compared to the bacteria-free control. The rheological characteristics of the culture changed only when mycobacteria were grown on hydrocarbons. Neither the medium nor the cell-free culture liquid had the surfactant activity, which indicated formation of an endotype biosurfactant by mycobacteria. Biodegradation of n-alkanes was accompanied by an increase in cell numbers, surfactant production, and changes in the hydrophobicity of bacterial cell surface and in associated phenomena of adsorption and desorption to the hydrocarbon phase. Research on AGS10 culture liquids containing the raw biosurfactant demonstrated the preservation of its activity within a broad range of pH, temperature, and salinity.  相似文献   

2.
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil–seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil–seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical–chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil–seawater interfaces over a large temperature interval.  相似文献   

3.
The application potential of microfungal strains (Cadophora malorum, Mucor circinelloides, Trichoderma viride, nonsporulating culture Mycelia sterilia) as promising lipid producers is investigated. The C. malorum strain is found to be optimal for oil sludge recycling into biofuel. Its palmitic acid content is 52.9%, and it ensures a cetane number of the obtained biodiesel. The ability of the C. malorum strain to degrade n-alkanes and polyaromatic hydrocarbons allows the effective bioremediation of oil sludge to be performed.  相似文献   

4.
Botrytis cinerea attacks a broad range of host causing significant economic losses in the worldwide fruit export industry. Hitherto, many studies have focused on the penetration mechanisms used by this phytopathogen, but little is known about the early stages of infection, especially those such as adhesion and germination. The aim of this work was to evaluate the effect of cuticular waxes compounds from table grapes on growth, germination and gene expression of B. cinerea. To accomplish this, growth was analyzed using as substrate n-alkanes extracted from waxes of fresh fruit (table grapes, blueberries and apricots). Subsequently, the main compounds of table grape waxes, oleanolic acid (OA) and n-fatty alcohols, were mixed to generate a matrix on which conidia of B. cinerea were added to assess their effect on germination and expression of bctub, bchtr and bchex genes. B. cinerea B05.10, isolated from grapes, increased its growth on a matrix composed by table grapes n-alkanes in comparison to a matrix made with n-alkanes from apricot or blueberries. Moreover, at 2.5 h, B05.10 germination increased 17 and 33 % in presence of n-alkanes from table grape, in comparison to conditions without alkanes or with blueberries alkanes, respectively. Finally, expression of bchtr and bchex showed a significant increase during the first hour after contact with n-fatty alcohols and OA. In conclusion, B. cinerea displays selectivity towards certain compounds found in host waxes, mainly n-fatty alcohols, which could be a good candidate to control this phytopathogen in early stages of infection.  相似文献   

5.
Pseudomonas aeruginosa strain NY3 has an extraordinary capacity to utilize a wide range of substrates, including n–alkanes of lengths C5 to C34, aromatic compounds, phenols, diesel and crude oil, and it can produce a variety of small bioactive molecules, including rhamnolipids, which can enhance its metabolic capacity for hydrophobic organic pollutants. This capacity makes NY3 a good candidate for use in environmental pollution remediation. Alkane hydroxylases catalyze both the initial and rate-limiting step of the terminal oxidation of n–alkanes. To better understand the genetic mechanisms by which P. aeruginosa NY3 degrades such a wide range of n–alkanes, two putative coding genes of alkane hydroxylases were functionally characterized using a gene-knockout approach with three different degradation systems. The single n–alkane test indicated that the hydroxylase AlkB2 acted in the early growth phase and played a major role in the utilization of C12–C18. However, a double mutant showed a trend towards recovery when C20–C24 were used as sole carbon source. This suggests that there are other enzymes capable of utilizing n–alkanes longer than C20. Tests of both artificial n–alkanes mixture and crude oil-containing waste water showed similar results, suggesting that both AlkB1 and AlkB2 are involved in n–alkane degradation, and, moreover, that AlkB2 plays a major role. Finally, given the wider functional range of both AlkBs in the mixture of n–alkanes compared to that of single n–alkanes, these results hint at co-metabolism.  相似文献   

6.
Biodegradation of alkyl-substituted adamantane derivatives (1-methyl, 1,3-dimethyl-, and 1,3,5-trimethyladamantane) by slow-growing bacteria Mycobacterium AGS10 was studied. The process was carried out under extremely acidic conditions (pH 2.5). Bacterial strain AGS10 was able to utilize these alicyclic hydrocarbons with a high degree of condensation and diamond-like structure, which are usually resistant to microbial transformation. Efficiency of alkyaldamantane biodegradation by the cells growing with these substrates as the sole carbon and energy sources was affected significantly by their aggregate state, which depended on molecular structure. Compared to the solid 1-methyladamantane, 1,3-dimethyladamantane, which is liquid under normal conditions, was a preferable substrate. Adamantanes in the gas condensate were generally more resistant to bacterial degradation than such markers as normal and isoprenoid alkanes. Moreover, biodegradation had no significant effect on relative distribution of the tested С11–С13 alkyladamantanes.  相似文献   

7.
An efficient biosurfactant-producing strain was isolated and cultured from Dagang oil field (China) using crude oil as sole source of carbon. Based on partial sequenced 16S rDNA analysis, the isolated strain was identified as Pseudomonas aeruginosa SNP0614. The bacterium P. aeruginosa SNP0614 produced a type of biosurfactant with excessive foam-forming properties. After microbial cultivation at 37°C and 150 rpm for 12 h, the produced biosurfactant was found to reduce the surface tension to 25.4 mN/m with critical micelle concentration (CMC) of 45.0 mg/L. After 20 days of incubation, the biosurfactant exhibited 90% emulsification activity (E24) on crude oil. FTIR spectroscopy of extracted biosurfactant indicated the biosurfactant as lipopeptide. The significant synergistic effect between P. aeruginosa SNP0614 and the mixed oildegrading bacteria resulted in increasing n-alkanes degradation rate by 30%. The strain P. aeruginosa SNP0614 represented as a promising biosurfactant producer and could be applied in a variety of biotechnological and industrial processes, particularly in microbial enhanced oil recovery and the bioremediation of oil pollution.  相似文献   

8.
In recent years, some marine microbes have been used to degrade diesel oil. However, the exact mechanisms underlying the biodegradation are still poorly understood. In this study, a hypothermophilous marine strain, which can degrade diesel oil in cold seawater was isolated from Antarctic floe-ice and identified and named as Rhodococcus sp. LH. To clarify the biodegradation mechanisms, a gas chromatography-mass spectrometry (GC-MS)-based metabolomics strategy was performed to determine the diesel biodegradation process-associated intracellular biochemical changes in Rhodococcus sp. LH cells. With the aid of partial least squares-discriminant analysis (PLS-DA), 17 differential metabolites with variable importance in the projection (VIP) value greater than 1 were identified. Results indicated that the biodegradation of diesel oil by Rhodococcus sp. LH was affected by many different factors. Rhodococcus sp. LH could degrade diesel oil through terminal or sub-terminal oxidation reactions, and might also possess the ability to degrade aromatic hydrocarbons. In addition, some surfactants, especially fatty acids, which were secreted by Rhodococcus into medium could also assist the strain in dispersing and absorbing diesel oil. Lack of nitrogen in the seawater would lead to nitrogen starvation, thereby restraining the amino acid circulation in Rhodococcus sp. LH. Moreover, nitrogen starvation could also promote the conversation of relative excess carbon source to storage materials, such as 1-monolinoleoylglycerol. These results would provide a comprehensive understanding about the complex mechanisms of diesel oil biodegradation by Rhodococcus sp. LH at the systematic level.  相似文献   

9.
Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.  相似文献   

10.
Candida tropicalis can grow with alkanes or plant oils as the sole carbon source, and its industrial application thus has great potential. However, the choice of a suitable genetic operating system can effectively increase the speed of metabolic engineering. MazF functions as an mRNA interferase that preferentially cleaves single-stranded mRNAs at ACA sequences to inhibit protein synthesis, leading to cell growth arrest. Here, we constructed a suicide plasmid named pPICPJ-mazF that uses the mazF gene of Escherichia coli as a counterselectable marker for the markerless editing of C. tropicalis genes to increase the rate of conversion of oils into long-chain dicarboxylic acids. To reduce the β-oxidation of fatty acids, the carnitine acetyltransferase gene (CART) was deleted using the gene editing system, and the yield of long-chain acids from the strain was increased to 8.27 g/L. By two homologous single exchanges, the promoters of both the cytochrome P450 gene and the NADPH–cytochrome P450 reductase gene were subsequently replaced by the constitutively expressed promoter pGAP, and the production of long-chain dicarboxylic acids by the generated strain (C. tropicalis PJPP1702) reached 11.39 g/L. The results of fed-batch fermentation showed that the yield of long-chain acids from the strain was further increased to 32.84 g/L, which was 11.4 times higher than that from the original strain. The results also showed that the pPICPJ-mazF-based markerless editing system may be more suited for completing the genetic editing of C. tropicalis.  相似文献   

11.
In the model species Arabidopsis thaliana, the floral homeotic C-class gene AGAMOUS (AG) specifies reproductive organ (stamen and carpels) identity and floral meristem determinacy. Gene function analyses in other core eudicots species reveal functional conservation, subfunctionalization and function switch of the C-lineage in this clade. To identify the possible roles of AG-like genes in regulating floral development in distylous species with dimorphic flowers (pin and thrum) and the C function evolution, we isolated and identified an AG ortholog from Fagopyrum esculentum (buckwheat, Family Polygonaceae), an early diverging species of core eudicots preceding the rosids-asterids split. Protein sequence alignment and phylogenetic analysis grouped FaesAG into the euAG lineage. Expression analysis suggested that FaesAG expressed exclusively in developing stamens and gynoecium of pin and thrum flowers. Moreover, FaesAG expression reached a high level in both pin and thrum flowers at the time when the stamens were undergoing rapidly increased in size and microspore mother cells were in meiosis. FaesAG was able to substitute for the endogenous AG gene in specifying stamen and carpel identity and in an Arabidopsis ag-1 mutant. Ectopic expression of FaesAG led to very early flowering, and produced a misshapen inflorescence and abnormal flowers in which sepals had converted into carpels and petals were converted to stamens. Our results confirmed establishment of the complete C-function of the AG orthologous gene preceding the rosids-asterids split, despite the distinct floral traits present in early- and late-diverging lineages of core eudicot angiosperms.  相似文献   

12.
Arabidopsis AGAMOUS (AG) has roles in specifying reproductive organ (stamens and carpels) identity, floral meristem determinacy, and repression of A-function. To investigate possible roles of AG orthologous genes in gymnosperm species and evolution of C function, we isolated and identified AG orthologous gene TcAG from Taxus chinensis var. mairei (family Taxaceae, order Coniferales), a member of the last divergant lineage from higher Conifer that sisters to Gnetales. Sequence alignment and phylogenetic analysis grouped TcAG into the gymnosperm AG lineage. TcAG was expressed in both developing male and female cones, but there was no expression in juvenile leaves. Ectopic expression of TcAG in an Arabidopsis ag mutant produced flowers with the third whorl petaloid stamen and fourth whorl normal carpel, but failed to convert first whorl sepals into carpeloid organs and second whorl petals into stamenoid organs. A 35S::TcAG transgenic Arabidopsis ag mutant had very early flowering, and produced a misshapen inflorescence with a shortened floral axis. Our results suggest that establishment of the complete C-function occurred gradually during AG lineage evolution even in gymnosperms.  相似文献   

13.
One of the main challenges in elimination of oil contamination from polluted environments is improvement of biodegradation by highly efficient microorganisms. Bacillus subtilis MJ01 has been evaluated as a new resource for producing biosurfactant compounds. This bacterium, which produces surfactin, is able to enhance bio-accessibility to oil hydrocarbons in contaminated soils. The genome of B. subtilis MJ01 was sequenced and assembled by PacBio RS sequencing technology. One big contig with a length of 4,108,293 bp without any gap was assembled. Genome annotation and prediction of gene showed that MJ01 genome is very similar to B. subtilis spizizenii TU-B-10 (95% similarity). The comparison and analysis of orthologous genes carried out between B. subtilis MJ01, reference strain B. subtilis subsp. subtilis str. 168, and close relative spizizenii TU-B-10 by microscope platform and various bioinformatics tools. More than 88% of 4269 predicted coding sequences in MJ01 had at least one similar sequence in genome of reference strain and spizizenii TU-B-10. Despite this high similarity, some differences were detected among encoding sequences of non-ribosome protein and bacteriocins in MJ01 and spizizenii TU-B-10. MJ01 has unique nucleotide sequences and a novel predicted lasso-peptide bacteriocin; it also has not any similar nucleotide sequence in non-redundant nucleotide data base.  相似文献   

14.
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.  相似文献   

15.
The total energies, growth patterns, equilibrium geometries, relative stabilities, hardnesses, intramolecular charge transfer, and magnetic moments of HoSi n (n?=?12–20) clusters have been reexamined theoretically using two different density functional schemes in combination with relativistic small-core Stuttgart effective core potentials (ECP28MWB) for the Ho atoms. The results show that when n?=?12–15, the most stable structures are predicted to be exohedral frameworks with a quartet ground state, but when n?=?16–20, they are predicted to be endohedral frameworks with a sextuplet ground state. These trend in stability across the clusters (gauged from their dissociation energies) was found to be approximately the same regardless of the DFT scheme used in the calculations, with HoSi13, HoSi16, HoSi18, and HoSi20 calculated to be more stable than the other clusters. The results obtained for cluster hardness indicated that doping the Ho atom into Si13 and Si16 leads to the most stable HoSi n clusters, while doping Ho into the other Si n clusters increases the photochemical sensitivity of the cluster. Analyses of intracluster charge transfer and magnetic moments revealed that charge always shifts from the Ho atom to the Si n cluster during the creation of exohedral HoSi n (n?=?12–15) structures. However, the direction of charge transfer is reversed during the creation of endohedral HoSi n (n?=?16–20) structures, which implies that Ho acts as an electron acceptor when it is encapsulated in the Si n cage. Furthermore, when the most stable exohedral HoSi n (n?=?12–15) structures are generated, the 4f electrons of Ho are virtually unchanged and barely participate in intracluster bonding. However, in the most stable endohedral HoSi n (n?=?16–20) frameworks, a 4f electron does participate in bonding. It does this by transferring to the 5d orbital, which hybridizes with the 6s and 6p orbitals and then interacts with Si valence sp orbitals. Meanwhile, the total magnetic moments of the HoSi n (n?=?16–20) clusters are considerably higher than those of HoSi n (n?=?12–15). Interestingly, the endohedral HoSi16 and HoSi20 clusters can be viewed as the most suitable building blocks for novel high-density magnetic storage nanomaterials and for novel optical and optoelectronic photosensitive nanomaterials, respectively.  相似文献   

16.
The functional polymorphism A1082G in the gene (IL10) for interleukin-10 associated with risk of oral squamous cell carcinoma (OSCC). The present case–control study was to evaluate the possible association between IL10 A1082G gene and OSCC in north Indian population. Analysis of IL10 A1082G genotype in 232 OSCC cases and 221 healthy controls of comparable age, gender, smokers, tobacco chewing and alcohol consumption. IL10 A1082G status in cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The frequencies of IL10 A1082G polymorphism AA, AG, GG genotypes were 29.74, 68.10 and 2.15% in OSCC cases and 57.46, 42.08 and 0.45% in healthy controls. The average frequency of G mutant allele was 36.20% in OSCC cases compared with 21.50% among the controls and this allele was associated with increased risk for OSCC cases. Heterozygous AG genotype was found statistically significant in OSCC cases than in controls (OR = 1.6, 95% CI = 1.1–2.2, P = 0.003), whereas homozygous mutant GG genotype was not found significant (OR = 4.7, 95% CI = 0.55–41.1, P = 0.2). Moreover, we found that G allele was significant in OSCC cases of tobacco chewing. The frequency of IL10 A1082G polymorphism G allele and AG genotype is associated with OSCC cases as compared with controls; this may be due to smoking and tobacco chewing. Our findings showed that in IL10 A1082G gene polymorphism AG genotype and G allele may participate in the progression of OSCC.  相似文献   

17.
Jatropha curcas and Jatropha mollissima plants were evaluated under conditions of high (HSM) and low (LSM) soil moisture in a semi-arid environment, as changes in the content and concentration of epicuticular wax and the leaf metabolism which could have a relationship with drought tolerance. Besides epicuticular wax, gas exchange, antioxidant system and biochemical parameters of the photosynthetic metabolism were measured. The epicuticular wax content increased only in J. mollissima leaves 95 % under LSM, when compared with HSM conditions. Therefore, J. curcas invested less in the production of long-chain n-alkanes than did J. mollissima under LSM conditions. J. mollissima plants showed the highest CO2 assimilation rate during the HSM period compared to J. curcas. Both species showed high stability in some leaf biochemistry products, highlighting the highest sugar content, free amino acids, total soluble protein, and photosynthetic pigments in the leaves of J. mollissima plants under both of the soil moisture conditions. Moreover, the stability and performance of the different parameters, such as morphologic variables, seem to allow J. mollissima plants to tolerate semi-arid conditions.  相似文献   

18.
Several biodegradation experiments were carried out using 10 different yeast strains.Saccharomyces spp., Kluyveromyces spp. andRhodotorula spp. were tested for biodegradation of selected mycotoxins (ochratoxin A, nivalenol, deoxynivalenol and fumonisin B1) standardsin vitro. There was confirmed that some yeast strains are able to degrade some mycotoxins. However, great differences between individual strains were observed. Moreover, 12Saccharomyces cerevisiae strains were tested for their potential capability to degrade zearalenone and fumonisins in Sabouraud broth. Two strains were capable to degrade zearalenone totally, one strain decreased the mycotoxin concentration up to 25%, and one strain up to 75% of original amount. Two strains were capable to degrade fumonisins partially.  相似文献   

19.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

20.
The biodegradation of furfuryl alcohol (FA) in shake flask experiments using a pure culture of Pseudomonas putida (MTCC 1194) and Pseudomonas aeruginosa (MTCC 1034) was studied at 30 °C and pH 7.0. Experiments were performed at different FA concentrations ranging from 50 to 500 mg/l. Before carrying out the biodegradation studies, the bacterial strains were acclimatized to the concentration of 500 mg/l of FA by gradually raising 100 mg/l of FA in each step. The well acclimatized culture of P. putida and P. aeruginosa degraded about 80 and 66% of 50 mg/l FA, respectively. At higher concentration of FA, the percentage of FA degradation decreased. The purpose of this study was to determine the kinetics of biodegradation of FA by measuring biomass growth rates and concentration of FA as a function of time. Substrate inhibition was calculated from experimental growth parameters using the Haldane equation. Data for P. putida were determined as µ max ?=?0.23 h?1, K s ?=?23.93 mg/l and K i ?=?217.1 mg/l and for P. aeruginosa were determined as µ max ?=?0.13 h?1, K s ?=?21.3 mg/l and K i ?=?284.9 mg/l. The experimental data were fitted in Haldane, Aiba and Edwards inhibition models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号