首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.  相似文献   

2.
The diversity of the symbiotic community of the endemic Baikal sponge Swartschewskia papyracea was studied, and an analysis of the polyketide synthases genes spectrum in sponge-associated microorganisms was carried out. Six bacterial phyla were detected in the S. papyracea microbiome: Verrucomicrobia, Cyanobacteria, Actinobacteria, Bacteroidetes, Proteobacteria, and Planctomycetes. Unlike the microbial associations of other freshwater sponges, the community under study was dominated by the phylaVerrucomicrobia (42.1%) and Cyanobacteria (17.5%), while the proportion of the Proteobacteria was unusually low (9.7%). In the S. papyracea community metagenome, there were identified 18 polyketide synthases genes fragments, the closest homologues of which included the polyketide synthases of the microorganisms belonging to the bacterial phyla Cyanobacteria, Proteobacteria (classes Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), and Acidobacteria as well as the eukaryotic algae of the phylum Heterokonta (class Eustigmatophyceae). Polyketide synthase sequences from S. papyracea formed three groups on the phylogenetic tree: a group of hybrid NRPS/PKS complexes, a group of cyanobacterial polyketide synthases, and a group of homologues of the eukaryotic alga Nannochloropsis gaditana. Notably, the identified polyketide synthase genes fragments showed only a 57–88% similarity to the sequences from the databases, which implies the presence of genes controlling the synthesis of the novel, still unstudied, polyketide compounds in the S. papyracea community. It was proposed that the habitat conditions of S. papyracea affect the taxonomic composition of the microorganisms associated with the sponge, including the diversity of the producers of secondary metabolites.  相似文献   

3.
This study assessed the microbial diversity, activity, and composition of methane-oxidizing communities of a subarctic wetland in Russia with mosaic cover of Sphagnum mosses and lichens of the genera Cladonia and Cetraria. Potential methane-oxidizing activity of peat sampled from lichen-dominated wetland sites was higher than that in the sites dominated by Sphagnum mosses. In peat from lichen-dominated sites, major bacterial groups identified by high-throughput sequencing of the 16S rRNA genes were the Acidobacteria (35.4–41.2% of total 16S rRNA gene reads), Alphaproteobacteria (19.1–24.2%), Gammaproteobacteria (7.9–11.1%), Actinobacteria (5.5–13.2%), Planctomycetes (7.2–9.5%), and Verrucomicrobia (5.1–9.5%). The distinctive feature of this community was high proportion of Subdivision 2 Acidobacteria, which are not characteristic for boreal Sphagnum peat bogs. Methanotrophic community composition was determined by molecular analysis of the pmoA gene encoding particulate methane monooxygenase. Most (~80%) of all pmoA gene fragments revealed in peat from lichen-dominated sites belonged to the phylogenetic lineage represented by a microaerobic spiral-shaped methanotroph, “Candidatus Methylospira mobilis”. Members of the genus Methylocystis, which are typical inhabitants of boreal Sphagnum peat bogs, represented only a minor group of indigenous methanotrophs. The specific feature of a methanotrophic community in peat from lichen-dominated sites was the presence of uncultivated USCα (Upland Soil Cluster alpha) methanotrophs, which are typical for acidic upland soils showing atmospheric methane oxidation. The methanotrophic community composition in lichen-dominated sites of a tundra wetland, therefore, was markedly different from that in boreal Sphagnum peat bogs.  相似文献   

4.
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes’ crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.  相似文献   

5.
Diversity of the oil-degrading microbial strains isolated from the water and sediments of the Gulf of Finland (Baltic Sea) in winter and in summer was studied. Substrate specificity of the isolates for aliphatic and aromatic hydrocarbons was studied. The isolates belonged to 32 genera of the types Proteobacteria (alpha-, beta-, and gammaproteobacteria), Actinobacteria,Firmicutes, and Bacteroidetes. Seasonal variations of the oil-degrading microbial communities was revealed. The presence of the known genes responsible for the degradation of oil aliphatic and aromatic hydrocarbons was determined. The alkB sequence of the alkane hydroxylase gene was found in ~16% of the studied strains. The sequence of the phnAc phenanthrene 3,4- dioxygenase was found in Sphingobacterium sp. and Arthrobacter sp. isolates retrieved in winter and summer. In five Pseudomonas sp. strains from winter samples, the classical operons of naphthalene degradation (nah) were localized in catabolic plasmids, of which three belonged to IncР-9, one, to IncР-7, and two to an unidentified incompatibility group. Burkholderia and Delftia strains contained the operons for naphthalene degradation via salicylate and gentisate (nag). The presence of nag genes has not been previously reported for Delftia spp. strains. The sequences of the nagG salicylate 5-hydroxylase gene were also found in Achromobacter, Sphingobacterium, and Stenotrophomonas strains.  相似文献   

6.
On the basis of sequence analysis of the mitochondrial DNA (mtDNA) control region (CR), cytochrome b (Cytb), and cytochrome oxidase-1 (CoI) genes, the relationships of endemic species Salvelinus andriashevi Berg, 1948, represented by the only population from Lake Estikhed (Chukotka), were estimated. The data on the genealogical analysis of mtDNA haplotypes supported phylogenetic closeness of S. andriashevi and S. taranetzi. It was also demonstrated that the specimens of Chukchi charr, along with Salvelinus sp. 4 (Lake Nachikinskoe), S. krogiusae (Lake Dal’nee), S. boganidae and S. elgyticus (Lake El’gygytgyn), and S. a. erythrinus from Canada’s Northwest Territories (NWT) belonged to the Arctic group of Taranetz charr. The problem of coincidence of taxonomic differentiation of charrs of the genus Salvelinus based on morphological and genetic analyses is discussed.  相似文献   

7.

Objectives

To discover novel ketoreductases (KRED) from soil metagenome preparation of chiral alcohols.

Results

Three putative KRED were cloned, heterologously expressed in Eschericha coli and characterized based on the sequence analysis of soil metagenome. All the three enzymes (KRED424, KRED432, and KRED433) had maximum activity at 55 °C and pH 7. KRED424 had a broader substrate spectrum compared with the other two. Three prochiral carbonyl compounds were used to evaluate the abilities of enantioselective reductions of the KRED. For N-Boc-3-pyrrolidone, all enzymes produced an (S)-type alcohol in enantiomeric excess (>99 % ee). For ethyl 2-oxo-4-phenylbutyrate, KRED424 showed a higher conversion (91.5 %) and enantioselectivity (S-type, >99 % ee) than KRED432 and KRED433. For ethyl 4-chloroacetoacetate (COBE), both of KRED424 and KRED433 completely converted 20 mM substrate and KRED433 could obtain an (R)-alcohol with 94 % ee.

Conclusions

The three ketoreductases have potential in the preparation of pharmaceuticals and fine chemicals.
  相似文献   

8.
The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.  相似文献   

9.
10.
The expression profile of the ZEB1, ZEB2, VIM, CDH1, SFRP2, FOXQ1, TNC, MACC1, PLS3, CFTR, FLNA, MUC2, TFF3, and RARRES3 genes, as well as the mutational status of the KRAS, NRAS, BRAF, and PIK3CA genes, were investigated in 40 patients with colorectal cancer and liver metastases. A comparative analysis of changes in gene expression in primary tumor cells and liver metastases was performed. Statistically significant differences were found between the expression levels of the ZEB2 (p = 0.004), VIM (p < 0.001), FLNA (p = 0.04), and MUC2 (p < 0.001) genes. It was demonstrated that the overall frequency of mutations of the KRAS gene was 18/40 (45%) and the PIK3CA gene was 9/40 (23%). Mutations in the NRAS and BRAF genes were not found. The concordance between the primary tumor and metastases in the liver by mutation status was 100%.  相似文献   

11.
12.
Genista saharae is an indigenous shrub legume that spontaneously grows in the northeastern Algerian Sahara. It is known for efficient dune fixation and soil preservation against desertification, due to its drought tolerance and its contribution to sustainable nitrogen resources implemented by biological N2-fixation. In this study, the root nodule bacteria of G. saharae were investigated using phenotypic and phylogenetic characterization. A total of 57 rhizobial strains were isolated from nodules from several sites in the hyper-arid region of Metlili and Taibet (east Septentrional Sahara). They all nodulate G. saharae species but they differed in their symbiotic efficiency and effectiveness. The genetic diversity was assessed by sequencing three housekeeping genes (atpD, recA and 16S rRNA). The majority of isolates (81 %) belonged to the genus Ensifer (previously Sinorhizobium), represented mainly by the species Ensifer meliloti. The next most abundant genera were Neorhizobium (17 %) with 3 different species: N. alkalisoli, N. galegae and N. huautlense and Mesorhizobium (1.75 %) represented by the species M. camelthorni. Most of the isolated strains tolerated up to 4 % (w/v) NaCl and grew at 45 °C. This study is the first report on the characterization of G. saharae microsymbionts in the Algerian Sahara.  相似文献   

13.
Vagina which is one of the important reservoirs for Staphylococcus and in pregnant women pathogenic strains may infect the child during the birth or by vertical transmission. A total of 68 presumptive Staphylococcus strains isolated from human vagina were found to be gram-positive cocci, and only 32 (47%) isolates were found beta-hemolytic. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) results confirmed 33 isolates belonged to Staphylococcus which consisting of 6 species, i.e., S. aureus (14), S. vitulinus (7), S. epidermidis (4), S cohnii (3), S. equorum (3), and S. succinus (2). Further, the result of antibiotic susceptibility tests showed that large proportions (76%–100%) of the isolates were resistant to multiple antibiotics and more often resistant to penicillin (100%), ampicillin (100%), oxacillin (97%), oxytetracycline (97%), vancomycin (97%), rifampin (85%), erythromycin (82%), and streptomycin (76%). In the present study, only the sec enterotoxin gene was detected in four S. aureus strains. DNA fingerprints of the 33 isolates that were generated using random amplified polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) PCR analysis revealed great genetic relatedness of isolates. High prevalence of vaginal colonization with multiple antibiotic-resistant staphylococci among pregnant women was observed which were emerged from the single respective species clones that underwent evolution. The vertical transmission of these multiple antibiotic-resistant Staphylococcus species to the infant is possible; therefore, the findings of this study emphasize the need for regular surveillance of antibiotic-resistant bacterial strains in pregnant women in this area.  相似文献   

14.
15.

Background

Mastitis is a common disease in dairy cattle throughout the world and causes considerable economic losses each year. An important aetiological agent of this disease is bacteria of the genus Streptococcus; hence, exploring the mechanisms of virulence in these bacteria is an extremely important step for the development of effective prevention programmes. The purpose of our study was to determine the ability to produce biofilm and the occurrence of selected invasiveness factors among bacteria of the genus Streptococcus isolated from cattle with the clinical form of mastitis in northeastern Poland.

Results

Most of the isolates analysed demonstrated an ability to produce biofilm (over 70%). Virulence genes were searched for in the three most common streptococci in our experiment: S. agalactiae, S. uberis and S. dysgalactiae. For S. agalactiae, only four genes were confirmed: rib (33%), cylE (78%), bca (37%), and cfb (100%). The genes pavA, scpB, bac and lmb were not present in any of the tested strains. The dominant serotypes of the species were Ia (n?=?8) and II (n?=?8), in addition to some strains that were not classified in any of the groups (n?=?6). Out of the eight selected genes for S. uberis (sua, pauA/skc, gapC, cfu, lbp, hasA, hasB, hasC), only one was not found (lbp). Finally, two genes were chosen for S. dysgalactiae (eno and napr), and their presence was confirmed in 76% and 86% of the strains, respectively.

Conclusions

The experiment showed that strains of Streptococcus spp. isolated from dairy cattle with clinical cases of mastitis in the northeastern part of Poland possess several invasiveness factors that can substantially affect the course of the disease, and this should be considered when developing targeted prevention programmes.
  相似文献   

16.
High-throughput sequencing of the 16S rRNA gene fragments was used to determine the phylogenetic diversity of prokaryotes, including human pathogens, in the liquid phase of the sludge of a biogas reactor processing oil-containing and municipal waste. A unique microbial community was found to develop in the sludge, which comprised the microorganisms of municipal wastewater (bacteria of human feces) and specific groups of aerobic and anaerobic microorganisms, which possibly arrived with oil-containing water. In the 16S rRNA gene library, the sequences of representatives of Firmicutes prevailed (54.9%), which belonged to anaerobic bacteria of the genera Gelria (26.6%), Syntrophomonas (6.0%), Lutispora (2.0%), and uncultured Clostridia (group MBA03, 11.1%). The Proteobacteria sequences (20.7%) belonged mostly to the metabolically diverse members of the genus Pseudomonas (13.8%). The phylum Bacteroidetes (7%) was represented by uncultured bacteria (VadinBC27 wastewater-sludge group), while members of the phylum Cloacimonetes were mainly syntrophic bacteria Candidatus Cloacamonas (7.5%). The sequences of bacteria commonly occurring in oilfields (Clostridia, Anaerolinea, Bacteroidetes, sulfate-reducing Deltaproteobacteria, members of the family Syntrophaceae, and of the genera Thauera, Pseudomonas, Dechloromonas, and Petrimonas) were revealed. No sequences of bacteria known to be pathogenic to humans were found. The cultured microorganisms were aerobic organotrophic and anaerobic fermenting, denitrifying, and methanogenic prokaryotes. Fermenting and methanogenic enrichments grew on a broad range of organic substrates (sucrose, glycerol, starch), producing volatile fatty acids (acetate, n-butyrate, and propionate), gases (Н2, СО2, and CH4), and decreasing pH of the medium from 7.0 to 4.5–5.0. The possible application of the biogas reactor sludge as a source of fermenting and methanogenic anaerobic prokaryotes, as well as of aerobic hydrocarbonoxidizing bacteria for oilfield introduction and for production of new preparations for enhanced oil recovery and for bioremediation of oil contamination is discussed.  相似文献   

17.
The diversity of culturable, aerobic and heterotrophic Bacillus and Bacillus-derived genera (BBDG) was investigated in various extreme environments (including thermal springs, cold deserts, mangroves, salt lakes, arid regions, salt pans and acidic soils) of India. Heat treatment followed by enrichment in different media led to a total of 893 bacterial isolates. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes AluI, MspI and HaeIII led to the clustering of these isolates into 12–74 groups for the different sites at 75 % similarity index, adding up to 559 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 392 bacilli, grouped in two families, Bacillaceae (89.03 %) and Paenibacillaceae (10.97 %), and included 13 different genera with 75 distinct species. It was found that among the thirteen genera, nine (Bacillus, Halobacillus, Lysinibacillus, Oceanobacillus, Pontibacillus, Salinibacillus, Sediminibacillus, Thalassobacillus and Virgibacillus) belonged to Bacillaceae and four (Ammoniphilus, Aneurinibacillus, Brevibacillus and Paenibacillus) belonged to Paenibacillaceae. Novel isolates tolerant to low and high pH and temperature, salt and low moisture were identified. The major outcome of the present investigation was the identification of niche-specific species and also the ubiquitous presence of selected species of BBDG, which illustrate the diversity and pervasive nature of BBDG in extreme environments.  相似文献   

18.
Hypermethylation in the CpG island promoter regions of tumor suppressors is known to play a significant role in the development of HNSCC and the detection of which can aid the classification and prognosis of HNSCC. This study aims to profile the methylation patterns in a panel of key genes including CDKN2A, CDKN2B, KLOTHO (KL), RASSF1A, RARB, SLIT2, and SFRP1, in a group of HNSCC samples from Saudi Arabia. The extent of methylation in these genes is determined using the MethyLight assay and correlated with known clinicopathological parameters in our samples of 156 formalin-fixed and paraffin-embedded HNSCC tissues. SLIT2 methylation had the highest frequency (64.6%), followed by RASSF1A (41.3%), RARB (40.7%), SFRP1 (34.9), KL (30.7%), CKDN2B (29.6%), and CKDN2A (29.1%). KL and SFRP1 methylation were more predominant in nasopharyngeal tumors (P = 0.001 and P = 0.031 respectively). Kaplan Meier analysis showed that patients with moderately differentiated tumors who display SFRP1 methylation have significantly worse overall survival in comparison with other samples. In contrast, better clinical outcomes were seen in patients with KL methylation. In conclusion, our findings suggest that the detection of frequent methylation in SFRP1 and KL genes’ promoters could serve as prognostic biomarkers for HNSCC.  相似文献   

19.
Fungi associated with black point were isolated from three highly susceptible wheat genotypes in the North China Plain. The 21 isolates represented 11 fungal genera. The most prevalent genera were Alternaria (isolation frequency of 56.7%), Bipolaris (16.1%), and Fusarium (6.0%). The other eight genera were Curvularia, Aspergillus, Cladosporium, Exserohilum, Epicoccum, Nigrospora, Penicillium, and Ulocladium; their isolation frequencies ranged from 0.8 to 4.8%. The pathogenicity of the isolates was individually assessed in the greenhouse by inoculating wheat plants with spore suspensions. Ten of the 21 isolates caused significantly higher incidences of black point than that the controls. These isolates belonged to eight fungal species (A. alternata, B. sorokiniana, B. crotonis, B. cynodontis, C. spicifera, F. equiseti, E. rostratum, and E. sorghinum) based on morphological traits and phylogenetic analysis. The average incidences of black point in the eight fungal species were 32.4, 54.3, 43.0, 41.9, 37.2, 38.8, 50.1, and 34.1%, respectively. B. sorokiniana and A. alternata were determined to be the most important pathogens in the North China Plain based on fungal prevalence and symptom severity. This study is the first to identify E. rostratum as a major pathogen causing black point in wheat.  相似文献   

20.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号