首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
Oil-degrading bacteria were isolated from soil and water samples taken in Russia, Kazakhstan, and the Antarctic; 13 of 86 strains proved to be thermotolerant. These bacteria utilized crude oil at 45–50°C; their growth optimum (35–37°C) and range (20–53°C) differ from those of mesophilic bacteria. Thermotolerant strains were identified as representatives of the genera Rhodococcus and Gordonia. It was shown that their ability to degrade petroleum products does not differ at 24 and 45°C. The strains Rhodococcus sp. Par7 and Gordonia sp. 1D utilized 14 and 20% of the oil, respectively, in 14 days at 45°C. All of the isolated thermotolerant bacteria grew in a medium containing 3% NaCl; the medium for the strains Gordonia amicalis 1B and Gordonia sp. 1D contained up to 10% NaCl. The bacteria G. amicalis and Rhodococcus erythropolis were able to utilize crude oil and individual hydrocarbons at higher (up to 50°C) temperatures.  相似文献   

2.

Objectives

To investigate gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8, a potential high-ethanol producer, in response to various stresses during high-temperature ethanol fermentation using sweet sorghum juice (SSJ) under optimal conditions.

Results

The maximal ethanol concentration obtained by S. cerevisiae KKU-VN8 using SSJ at 40 °C was 66.6 g/l, with a productivity of 1.39 g/l/h and a theoretical ethanol yield of 81%. Quantitative RT-PCR assays were performed to investigate the gene expression profiles of S. cerevisiae KKU-VN8. Differential expression of genes encoding heat-shock proteins (HSP82, HSP104, SSA4), genes involved in trehalose metabolism (TPS1, TPS2, NTH1) and genes involved the glycolytic pathway (ADH1, ADH2, CDC19) at various time points during fermentation was observed. The expression levels of HSP82, HSP104, SSA4, ADH1 and CDC19 were significantly higher than those of the controls (10.2-, 4-, 8-, 8.9- and 5.9-fold higher, respectively). In contrast, the expression levels of TPS1, TPS2, NTH1 and ADH2 were approx. 2-fold less than those of the controls.

Conclusions

The highly expressed genes encoding heat-shock proteins, HSP82 and SSA4, potentially play an important role in helping S. cerevisiae KKU-VN8 cope with various stresses that occur during high-temperature fermentation, leading to higher ethanol production efficiency.
  相似文献   

3.
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.  相似文献   

4.
Biodegradation of agribiomass especially wheat straw to biohydrogen and biomethane is an encouraging approach to the current waste management problem. To do so, the biomass must first be pretreated to break down lignin thereby increasing accessibility of the substrate to fermentative organisms. In the current study, out of 20 isolates from the granular sludge of full-scale anaerobic digester, four ligninolytic Bacillus sp. strains were selected based on their lignin and Azure B degradation. Further, among the four isolates, Brevibacillus agri AN-3 exhibited the highest of 88.4 and 78.1% decrease in COD of lignin and Azure B respectively. These strains were also found to secrete optimum yields of lignin peroxidase (LiP) at pH 3, laccase (Lac) at pH 5, and xylanase and cellulase enzymes at pH 7. The strains demonstrated maximum activity of Lip and Lac at 50 °C and xylanase and cellulase at 60 °C after 72-h growth. Among the four strains, Brevibacillus agri AN-3 showed hydrogen (H2) yield of 1.34 and 2.9 mol-H2/mol from xylose and cellulose respectively. In two-phase wheat straw batch fermentation, Brevibacillus agri AN-3 produced 88.3 and 283.7 mL/gVS cumulative H2 and methane (CH4) respectively. Biotreatment with ligninolytic Bacillus sp. strains perceived that 261.4% more methane yield could be obtained from the wheat straw than using the untreated wheat straw in batch fermentation. This is the first study establishing not only the hydrogen potential of ligninolytic Bacillus sp. strains but also indicates a vital role of these species in developing standard inoculum and a biocatalyst for processing agribiomass.
Graphical Abstract ?
  相似文献   

5.
The consortium of thermotolerant petroleum-oxidizing bacteria containing strains Gordonia sp. 1D VKM Ac-2720 D, Rhodococcus sp. Par7 VKM Ac-2722 D, and R. pyridinivorans L5A-BSU VKM Ac-2721 for destruction of oil and oil products in hot climates was developed for the first time. The consortium was effective in soils and liquid media at temperature as high as 50°C, at salinity up to 7%, and soil moisture of about 10%. The efficiency of petroleum destruction for 21 days was 70 and 59% at 24 and 45°C, respectively. The consortium of thermotolerant petroleum-destructing strains could be used as basis for the biopreparation for remediation of petroleum-contaminated soils and waters in hot climates.  相似文献   

6.
For efficient bioconversion of lignocellulosic materials to bioethanol, the study screened 19 white-rot fungal strains for their endocellulolytic activity and saccharification potential. Preliminary qualitative and quantitative screening revealed Cotylidia pannosa to be the most efficient endocellulase producing fungal strain when compared to the standard strain of Trichoderma reesei MTCC 164. Ensuing initial screening, the production of endocellulase was further optimized using submerged fermentation to recognize process parameters such as temperature, time, agitation pH, and supplementation of salts in media required for achieving maximum production of endocellulase. The strain C. pannosa produced the maximum amount of endocellulase (8.48 U/mL) under submerged fermentation with wheat bran (2%) supplemented yeast extract peptone dextrose (YEPD) medium after an incubation time of 56 h at 30 °C and pH 5.0 at an agitation rate of 120 rpm with a saccharification value of 50.5%. The fermentation of wheat bran hydrolysate with Saccharomyces cerevisiae MTCC 174 produced 4.12 g/L of bioethanol after 56 h of incubation at 30 °C. The results obtained from the present investigation establish the potential of white-rot fungus C. pannosa for hydrolysis and saccharification of wheat bran to yield fermentable sugars for their subsequent conversion to bioethanol, suggesting its application in efficient bioprocessing of lignocellulosic wastes.  相似文献   

7.
Application of cross-protection is expected to improve the thermotolerance of yeasts to enhance their ethanol production at high temperature. In this study, the effects of eight kinds of inorganic salts on the thermotolerance and ethanol production at high temperature in Pichia kudriavzevii were investigated. P. kudriavzevii showed strong thermotolerance and the ability to produce ethanol at high temperature, and higher ethanol production of P. kudriavzevii was observed at high temperature (37–42 °C) compared with that at 30 °C. Inorganic salt stresses induced obvious cross-protection of thermotolerance in P. kudriavzevii. The presence of 0.1 mol/L KNO3 or Na2SO4 or 0.2 mol/L NaCl, KCl, NaNO3, K2SO4 or MgCl2 increased the yeast biomass in YEPD medium at 44 °C to 2.72–3.46 g/L, obviously higher than that in the absence of salt stress (2.17 g/L). The addition of NaCl, KCl, NaNO3, KNO3, Na2SO4, K2SO4, CaCl2 and MgCl2 significantly increased the ethanol production of P. kudriavzevii in YEPD fermentation medium at 44 °C by 37–58%. KCl and MgCl2 exhibited the best performance on improving the thermotolerance and ethanol production, respectively, of P. kudriavzevii. A highly significant correlation (P?<?0.01) was obtained among ethanol production, biomass and glucose consumption, suggesting the important role of thermotolerance and glucose consumption in enhanced ethanol production. The combination of NaCl, KCl and MgCl2 had a synergistic effect on the improvement of thermotolerance and ethanol production at high temperature in P. kudriavzevii. This study provides some important clues for improving ethanol production of thermotolerant yeasts at high temperature.  相似文献   

8.
Sweet sorghum is a bioenergy crop that produces large amounts of soluble sugars in its stems (3–7 Mg ha?1) and generates significant amounts of bagasse (15–20 Mg ha?1) as a lignocellulosic feedstock. These sugars can be fermented not only to biofuels but also to bio-based chemicals. The market potential of the latter may be higher given the current prices of petroleum and natural gas. The yield and rate of production of optically pure d-(?)- and l-(+)-lactic acid as precursors for the biodegradable plastic polylactide was optimized for two thermotolerant Bacillus coagulans strains. Strain 36D1 fermented the sugars in unsterilized sweet sorghum juice at 50 °C to l-(+)-lactic acid (~150 g L?1; productivity, 7.2 g L?1 h?1). B. coagulans strain QZ19-2 was used to ferment sorghum juice to d-(?)-lactic acid (~125 g L?1; productivity, 5 g L?1 h?1). Carbohydrates in the sorghum bagasse were also fermented after pretreatment with 0.5 % phosphoric acid at 190 °C for 5 min. Simultaneous saccharification and co-fermentation of all the sugars (SScF) by B. coagulans resulted in a conversion of 80 % of available carbohydrates to optically pure lactic acid depending on the B. coagulans strain used as the microbial biocatalyst. Liquefaction of pretreated bagasse with cellulases before SScF (L + SScF) increased the productivity of lactic acid. These results show that B. coagulans is an effective biocatalyst for fermentation of all the sugars present in sweet sorghum juice and bagasse to optically pure lactic acid at high titer and productivity as feedstock for bio-based plastics.  相似文献   

9.
Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50–70 mg l?1 of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l?1), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24–48 mg l?1). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14–34 mg l?1). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.  相似文献   

10.
Molecular karyotyping and Southern blot hybridization were used to investigate chromosomal polymorphism of the LAC genes controlling lactose fermentation in Kluyveromyces marxianus strains isolated from various dairy products and natural sources in Russia and CIS countries. Profound polymorphism of karyotype patterns and accumulation of LAC genes were observed in dairy K. marxianus strains. K. marxianus strains isolated from dairy products intensively fermented lactose at 37°C after one day of cultivation, while non-dairy strains exhibited delayed lactose fermentation or did not ferment it at all. Based on the fermentation tests, twelve K. marxianus strains were selected, which are of interest as potential probiotic microorganisms suitable for further molecular genetic studies and breeding.  相似文献   

11.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   

12.
Thermophilic and thermotolerant aerobic methanotrophs   总被引:1,自引:1,他引:0  
The review generalizes the modern data on the taxonomic, structural, and functional diversity of aerobic methanotrophs growing at 25–50°C (Methylococcus capsulatus), 30–62°C (Methylocaldum szegediense, Methylocaldum gracile, and Methylocaldum tepidum), and 50–65°C (Methylothermus thermalis), which belong mainly to the Gammaproteobacteria. The specific features of adaptation of these methanotrophs to the temperature influences are considered on the metabolic and genetic levels. The recent sensational reports on the discovery and primary characterization of thermoacidophilic methanotrophs of the phylum Verrucomicrobia surviving at extreme pH (1–2) and temperature (65°C) values, corresponding to extremely low levels of CH4 and O2 solubility, are analyzed. The possibilities of implementation of the biotechnological potential of thermophilic and thermotolerant methanotrophs are discussed.  相似文献   

13.
As the optimal growth temperature of Bacillus licheniformis is relatively higher than many other industrial bacteria, its use for industrial production can reduce contamination and minimize cooling and product recovery costs during fermentation processes. However, little is known about the thermotolerance of this important bacterial species. To investigate the underlying mechanism, strains B. licheniformis ATCC 14580 and B186 were cultivated at their own optimal growth temperature (42 °C and 50 °C) and higher temperature (60 °C), respectively, and tandem mass tags (TMT)-based quantitative proteome analysis and bioinformatics tools were employed to identify differentially expressed proteins. A total of 21 differential proteins were identified and shown to participate in a wide range of biological processes, including protein refolding, amino acid and fatty acid metabolism, etc. Hence, the ability of B. licheniformis to exhibit optimal growth at high temperatures may depend on invoking its intrinsic “heat-against” proteomic mechanism for long-term viability. Our results may assist the genetic improvement of industrial strains of this important Bacillus specie.  相似文献   

14.
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.  相似文献   

15.
Lectins are proteins that are subject of intense investigations. Information on lectin from chickpea (Cicer arietinum L.) with respect to its biological activities are very limited. In this study, we purified lectin from the seeds of chickpea employing DEAE-cellulose and SP-Sephadex ion exchange chromatography and identified its molecular subunit mass as 35 kDa. The free radical scavenging activity of lectin measured by the DPPH assay has IC50 of 0.88 µg/mL. Lectin exerted antifungal activity against Candida krusei, Fusarium oxysporium oxysporium, Saccharomyces cerevisiae and Candida albicans, while antibacterial activity against E. coli, B. subtilis, S. marcescens and P. aeruginosa. The minimum inhibitory concentrations were 200, 240, 160 and 140 µg for C. krusei, F. oxysporium, S. cerevisiae and C. albicans respectively. Lectin was further examined for its antiproliferative potential against cancerous cell line. The cell viability assay indicated a high inhibition activity on Ishikawa, HepG2, MCF-7 and MDA-MB-231 with IC50 value of 46.67, 44.20, 53.58 and 37.46?µg/mL respectively. These results can provide a background for future research into the benefits of chickpea lectin to pharmacological perspective.  相似文献   

16.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

17.
Sugarcane bagasse is one of the low-cost substrates used for bioethanol production. In order to solubilize sugars in hemicelluloses like xylan, a new thermotolerant isolate of Candida tropicalis HNMA-1 with xylan-hydrolyzing ability was identified and characterized. The strain showed relative tolerance to high temperature. Our results demonstrated 0.211 IU ml?1 xylanase activity at 40 °C compared to 0.236 IU ml?1 at 30 °C. The effect of high temperature on the growth and fermentation of xylose and sugarcane bagasse hydrolysate were also investigated. In both xylose or hydrolysate medium, increased growth was recorded at 40 °C. Meanwhile, the efficiency of ethanol fermentation was adversely affected by temperature since yields of 0.088 g g?1 and 0.076 g g?1 in the xylose medium, in addition to 0.090 g g?1 and 0.078 g g?1 in the hydrolysate medium were noticed at 30 °C and 40 °C, respectively. Inhibitory compounds in the hydrolysate medium demonstrated negative effects on fermentation and productivity, with maximum ethanol concentration attained after 48 h in the hydrolysate, as opposed to 24 h in the xylose medium. Our data show that the newly thermotolerant isolate, C. tropicalis HNMA-1, is able to efficiently ferment xylose and hydrolysate, and also has the capacity for application in ethanol production from hemicellulosic sources.  相似文献   

18.
Kluyveromyces marxianus has the capability of producing xylitol from xylose because of the endogenous xylose reductase (KmXYL1) gene. In this study, we cloned KmXYL1 genes and compared amino acid sequences of xylose reductase (XR) from four K. marxianus strains (KCTC 7001, KCTC 7155, KCTC 17212, and KCTC 17555). Four K. marxianus strains showed high homologies (99%) of amino acid sequences with those from other reported K. marxianus strains and around 60% homologies with that from Scheffersomyces stipitis. For XR enzymatic activities, four K. marxianus strains exhibited thermostable XR activities up to 45°C and K. marxianus KCTC 7001 showed the highest XR activity. When reaction temperatures were increased from 30 to 45°C, NADH-dependent XR activity from K. marxianus KCTC 7001 was highly increased (46%). When xylitol fermentations were performed at 30 or 45°C, four K. marxianus strains showed very poor xylitol production capabilities regardless fermentation temperatures. Xylitol productions from four K. marxianus strains might be limited because of low xylose uptake rate or cell growth although they have high thermostable XR activities.  相似文献   

19.
A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33?±?1.34 to 122.22?±?2.80 g/L at 30–45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18?±?2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号