共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis. 相似文献
2.
Mok YF Ryan TM Yang S Hatters DM Howlett GJ Griffin MD 《Methods (San Diego, Calif.)》2011,54(1):67-75
The assembly of proteins into large fibrillar aggregates, known as amyloid fibrils, is associated with a number of common and debilitating diseases. In some cases, proteins deposit extracellularly, while in others the aggregation is intracellular. A common feature of these diseases is the presence of aggregates of different sizes, including mature fibrils, small oligomeric precursors, and other less well understood structural forms such as amorphous aggregates. These various species possess distinct biochemical, biophysical, and pathological properties. Here, we detail a number of techniques that can be employed to examine amyloid fibrils and oligomers using a fluorescence-detection system (FDS) coupled with the analytical ultracentrifuge. Sedimentation velocity analysis using fluorescence detection is a particularly useful method for resolving the complex heterogeneity present in amyloid systems and can be used to characterize aggregation in exceptional detail. Furthermore, the fluorescence detection module provides a number of particularly attractive features for the analysis of aggregating proteins. It expands the practical range of concentrations of aggregating proteins under study, which is useful for greater insight into the aggregation process. It also enables the assessment of aggregation behavior in complex biological solutions, such as cell lysates, and the assessment of processes that regulate in-cell or extracellular aggregation kinetics. Four methods of fluorescent detection that are compatible with the current generation of FDS instrumentation are described: (1) Detection of soluble amyloid fibrils using a covalently bound fluorophore. (2) Detection of amyloid fibrils using an extrinsic dye that emits fluorescence when bound to fibrils. (3) Detection of fluorescently-labeled lipids and their interaction with oligomeric amyloid intermediates. (4) Detection of green fluorescence protein (GFP) constructs and their interactions within mammalian cell lysates. 相似文献
3.
The process of physiological decline leading to death of the individual is driven by the deteriorating capacity to withstand extrinsic and intrinsic hazards, resulting in damage accumulation with age. The dynamic changes with time of the network governing the outcome of misfolded proteins, exemplifying as intrinsic hazards, is considered here as a paradigm of aging. The main features of the network, namely, the non-linear increase of damage and the presence of amplifying feedback loops within the system are presented through a survey of the different components of the network and related cellular processes in aging and disease. 相似文献
4.
Almstedt K Lundqvist M Carlsson J Karlsson M Persson B Jonsson BH Carlsson U Hammarström P 《Journal of molecular biology》2004,342(2):619-633
Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to mutations. The disease marble brain syndrome (MBS), known also as carbonic anhydrase II deficiency syndrome (CADS), can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. One mutation associated with MBS entails the His107Tyr substitution. Here, we demonstrate that this mutation is a remarkably destabilizing folding mutation. The loss-of-function is clearly a folding defect, since the mutant shows 64% of CO(2) hydration activity compared to that of the wild-type at low temperature where the mutant is folded. On the contrary, its stability towards thermal and guanidine hydrochloride (GuHCl) denaturation is highly compromised. Using activity assays, CD, fluorescence, NMR, cross-linking, aggregation measurements and molecular modeling, we have mapped the properties of this remarkable mutant. Loss of enzymatic activity had a midpoint temperature of denaturation (T(m)) of 16 degrees C for the mutant compared to 55 degrees C for the wild-type protein. GuHCl-denaturation (at 4 degrees C) showed that the native state of the mutant was destabilized by 9.2kcal/mol. The mutant unfolds through at least two equilibrium intermediates; one novel intermediate that we have termed the molten globule light state and, after further denaturation, the classical molten globule state is populated. Under physiological conditions (neutral pH; 37 degrees C), the His107Tyr mutant will populate the molten globule light state, likely due to novel interactions between Tyr107 and the surroundings of the critical residue Ser29 that destabilize the native conformation. This intermediate binds the hydrophobic dye 8-anilino-1-naphthalene sulfonic acid (ANS) but not as strong as the molten globule state, and near-UV CD reveals the presence of significant tertiary structure. Notably, this intermediate is not as prone to aggregation as the classical molten globule. As a proof of concept for an intervention strategy with small molecules, we showed that binding of the CA inhibitor acetazolamide increases the stability of the native state of the mutant by 2.9kcal/mol in accordance with its strong affinity. Acetazolamide shifts the T(m) to 34 degrees C that protects from misfolding and will enable a substantial fraction of the enzyme pool to survive physiological conditions. 相似文献
5.
Once misfolded and aggregated proteins were as interesting as yesterday's trash, just a bothersome byproduct of productive activities. Today, they attract sustained interest from both basic researchers and practicing engineers. In the burgeoning biopharmaceutical industry, protein misfolding and aggregation pose significant challenges to the economic manufacture of safe and effective protein products. In the clinic, protein aggregates are believed to be pathological agents in a number of serious neurodegenerative disorders, such as Alzheimer's and Parkinson's. Over the past few years, the quantity of research into biotechnological aspects of protein misfolding and aggregation has skyrocketed. However, the quality of the published work is quite variable. In this brief opinion piece, we describe what we believe are some key features of high‐quality publications in protein aggregation. We focus on experimental studies that may also have a kinetic modeling component. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1109–1115, 2013 相似文献
6.
Yraima Cordeiro Bruno Macedo Jerson L. Silva Mariana P. B. Gomes 《Biophysical reviews》2014,6(1):97-110
Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein–NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer’s, Parkinson’s, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-β peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs. 相似文献
7.
Dario Spigolon D. Travis Gallagher Adrian Velazquez-Campoy Donatella Bulone Jatin Narang Pier Luigi San Biagio Francesco Cappello Alberto J.L. Macario Everly Conway de Macario Frank T. Robb 《Biochemistry and Biophysics Reports》2017
The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The disassembly of the wild type complex, which is tightly coupled with subunit denaturation, was decoupled by the mutation without affecting the stability of individual subunits. Our results verify the effectiveness of the homo-hexadecameric archaeal chaperonin as a proxy to assess the impact of subtle defects in heterologous systems with mutations in a single subunit. 相似文献
8.
Creatine kinase (CK) is a key enzyme to maintain the energy homeostasis in vertebrate excitable tissues. Due to its importance in cellular energetics, the activity and level of CK are crucial to cellular and body functions. CK is sensitive to oxidative stresses and is thought to be one of the main targets of oxidative modification in neurodegenerative diseases. In this research, we investigated the effect of copper, an essential trace element for all organisms and an inducer of the reactive oxygen species, on CK refolding. It was found that trace amounts of Cu(2+) (3mol eq of Cu(2+)) could efficiently block the refolding of CK. The Cu(2+)-trapped CK could not be reactivated by the addition of EDTA, but could be reactivated by DTT. Spectroscopic experiments suggested that copper ions blocked CK refolding by specifically binding with the monomeric refolding intermediate, which further retarded CK refolding and promoted the formation of off-pathway aggregates. The results herein suggested that Cu(2+)-induced CK dysfunction might be caused not only by the post-translational oxidation, but also by the direct binding of copper ions with the newly-synthesized polypeptides. 相似文献
9.
Beyer K 《Cell biochemistry and biophysics》2007,47(2):285-299
A key feature in Parkinson’s disease is the deposition of Lewy bodies. The major protein component of these intracellular
deposits is the 140-amino acid protein α-synuclein that is widely distributed throughout the brain. α-synuclein was identified
in presynaptic terminals and in synaptosomal preparations. The protein is remarkable for its structural variability. It is
almost unstructured as a monomer in aqueous solution. Self-aggregation leads to a variety of β-structures, while membrane
association may result in the formation of an amphipathic helical structure. The present article strives to give an overview
of what is currently known on the interaction of α-synuclein with lipid membranes, including synthetic lipid bilayers, membraneous
cell fractions, synaptic vesicles and intact cells. Manifestations of a functional relevance of the α-synuclein–lipid interaction
will be discussed and the potential pathogenicity of oligomeric α-synuclein aggregates will be briefly reviewed. 相似文献
10.
11.
Seventy years ago, we learned from Chris Anfinsen that the stereochemical code necessary to fold a protein is embedded into its amino acid sequence. In water, protein morphogenesis is a spontaneous reversible process leading from an ensemble of disordered structures to the ordered functionally competent protein; conforming to Aristotle''s definition of substance, the synolon of matter and form. The overall process of folding is generally consistent with a two state transition between the native and the denatured protein: not only the denatured state is an ensemble of several structures, but also the native protein populates distinct functionally relevant conformational (sub)states. This two‐state view should be revised, given that any globular protein can populate a peculiar third state called amyloid, characterized by an overall architecture that at variance with the native state, is by‐and‐large independent of the primary structure. In a nut shell, we should accept that beside the folded and unfolded states, any protein can populate a third state called amyloid which gained center stage being the hallmark of incurable neurodegenerative disorders, such as Alzheimer''s and Parkinson''s diseases as well as others. These fatal diseases are characterized by clear‐cut clinical differences, yet display some commonalities such as the presence in the brain of amyloid deposits constituted by one misfolded protein specific for each disease. Some aspects of this complex problem are summarized here as an excursus from the prion''s fibrils observed in the brain of aborigines who died of Kuru to the amyloid detectable in the cortex of Alzheimer''s patients. 相似文献
12.
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self‐association of disease proteins and determine whether they elicit a toxic or benign outcome. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 229–236, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
13.
The 98-residue protein acylphosphatase exhibits a high propensity for aggregation under certain conditions. Aggregates formed from wild-type acylphosphatase in the presence of 2,2,2-trifluoroethanol and from highly destabilized mutants are essentially identical in structure. Furthermore, it has been shown by mutational studies that different regions of the protein are important for aggregation and folding. In the present molecular dynamics study, we compare the behavior of the protein in aqueous solution and in a 25% (v/v) 2,2,2-trifluoroethanol/water environment mimicking the experimental conditions. The 2,2,2-trifluoroethanol surrounding affects the structure of the protein mostly in the regions important for aggregation, in good agreement with experimental data. This suggests that the early step of (partly) unfolding, which precedes the aggregation process, has been observed. 相似文献
14.
Conformational modification of normal prion protein (PrPc) to protease-resistant, β-sheet rich, aggregates (PrPsc) is commonly accepted cause for prion diseases. On the other hand, several studies in recent years implicate soluble, protease-sensitive, oligomers of PrPc in neuronal damage. Previously, our group has shown that small, highly structured RNAs (shsRNAs), in conjunction with a serum factor, facilitated the conversion of hrPrP to a protease resistant, high molecular weight isoform. In the current study we demonstrate that shsRNAs, in the absence of the serum factor, generate soluble, protease-sensitive, and potentially toxic oligomers of ovrPrP. We have isolated a 500 kD oligomer by size exclusion chromatography of the reaction mixture and identified the accessible epitopes. The soluble PrP-oligomers were present in enhanced amounts in scrapie infected sheep brain and treating extracts of normal sheep brain with shsRNA resulted in oligomerization of endogenous PrP. Isolation, characterization of PrP-oligomers and their possible implication in prion diseases is discussed. 相似文献
15.
Pawar AP Dubay KF Zurdo J Chiti F Vendruscolo M Dobson CM 《Journal of molecular biology》2005,350(2):379-392
Increasing evidence indicates that many peptides and proteins can be converted in vitro into highly organised amyloid structures, provided that the appropriate experimental conditions can be found. In this work, we define intrinsic propensities for the aggregation of individual amino acids and develop a method for identifying the regions of the sequence of an unfolded peptide or protein that are most important for promoting amyloid formation. This method is applied to the study of three polypeptides associated with neurodegenerative diseases, Abeta42, alpha-synuclein and tau. In order to validate the approach, we compare the regions of proteins that are predicted to be most important in driving aggregation, either intrinsically or as the result of mutations, with those determined experimentally. The knowledge of the location and the type of the "sensitive regions" for aggregation is important both for rationalising the effects of sequence changes on the aggregation of polypeptide chains and for the development of targeted strategies to combat diseases associated with amyloid formation. 相似文献
16.
Misfolding-prone proteins produced in bacteria usually fail to adopt their native conformation and aggregate. In cells producing folding-reluctant protein species, folding modulators are supposed to be limiting, a fact that enhances protein deposition. Therefore, coproducing DnaK or other main chaperones along with the target protein has been a common approach to gain solubility, although with very inconsistent and often discouraging results. In an attempt to understand the reason for this inconsistency, the impact of exogenous DnaK (encoded in an accompanying plasmid) on two protein features observed as indicators of protein quality, namely solubility and functionality, has been analysed here through the specific fluorescence emission of a reporter Green Fluorescent Protein (GFP). Intriguingly, GFP solubility is strongly dependent on its own yield but poorly affected by DnaK levels. On the contrary, the specific fluorescence of both soluble and insoluble GFP populations is simultaneously modulated by the availability of DnaK, with a profile that is clearly dissimilar to that shown by protein solubility. Therefore, solubility, not being coincident with the biological activity of the target protein, might not be a robust indicator of protein quality. 相似文献
17.
Benning LN Whisstock JC Sun J Bird PI Bottomley SP 《Protein science : a publication of the Protein Society》2004,13(7):1859-1864
The metastable serpin architecture is perturbed by extremes of temperature, pH, or changes in primary sequence resulting in the formation of inactive, polymeric conformations. Polymerization of a number of human serpins in vivo leads to diseases such as emphysema, thrombosis, and dementia, and in these cases mutations are present within the gene encoding the aggregating protein. Here we show that aggregation of the human serpin, proteinase inhibitor-9 (PI-9), occurs under physiological conditions, and forms aggregates that are morphologically distinct from previously characterized serpin polymers. Incubation of monomeric PI-9 at 37 degrees C leads to the rapid formation of aggregated PI-9. Using a variety of spectroscopic methods we analyzed the nature of the structures formed after incubation at 37 degrees C. Electron microscopy showed that PI-9 forms ordered circular and elongated-type aggregates, which also bind the fluorescent dye Thioflavin T. Our data show that in vitro wild-type PI-9 forms aggregates at physiological temperatures. The biological implications of PI-9 aggregates at physiological temperatures are discussed. 相似文献
18.
We propose a realistic coarse-grained protein model and a technique to "anchor" the model to available experimental data. We apply this procedure to characterize the effect of multiple mutations on the folding mechanism of protein S6. We show that the mutation of a few "gatekeeper" residues triggers significant changes on the folding landscape of S6. These results suggest that gatekeeper residues control the flexibility of critical regions of S6, that in turn regulates the delicate balance between folding and aggregation. Although obtained with a minimalist protein model, these results are fully consistent with experimental evidence and offer a clue to understand the interplay between folding and aggregation in protein S6. 相似文献
19.
Understanding the energetic and structural basis of protein folding in a physiological context may represent an important
step toward the elucidation of protein misfolding and aggregation events that take place in several pathological states. In
particular, investigation of the structure and thermodynamic properties of partially folded intermediate states involved in
productive folding or in misfolding/aggregation may provide insight into these processes and suggest novel approaches to prevent
misfolding in living organisms. This goal, however, has remained elusive, because such intermediates are often transient and
correspond to metastable states that are little populated under physiological conditions. Characterization of these states
requires their stabilization by means of manipulation of the experimental conditions, involving changes in temperature, pH,
or addition of different types of denaturants. In the past few years, hydrostatic pressure has been increasingly used as a
thermodynamic variable in the study of both protein folding and misfolding/aggregation transitions. Compared with other chemical
or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation,
allowing the stabilization of partially folded states that are usually not significantly populated under more drastic conditions.
Much of the recent work in this field has focused on the characterization of folding intermediates, because they seem to be
involved in a variety of disease-causing protein misfolding and aggregation reactions. Here, we review recent examples of
the use of hydrostatic pressure as a tool to gain insight into the forces and energetics governing the productive folding
or the misfolding and amyloid aggregation of proteions. 相似文献
20.
Dalle-Donne I Aldini G Carini M Colombo R Rossi R Milzani A 《Journal of cellular and molecular medicine》2006,10(2):389-406
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. Alarge number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches. 相似文献