首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular chaperones mainly function in assisting newly synthesized polypeptide folding and protect non-native proteins from aggregation, with known structural features such as the ability of spontaneous folding/refolding and high conformational flexibility. In this report, we verified the assumption that the lack of disulfide bonds in molecular chaperones is a prerequisite for such unique structural features. Using small heat shock protein (one sub-class of chaperones) Hsp16.3 as a model system, our results show the following: (1) Cysteine-free Hsp16.3 wild type protein can efficiently exhibit chaperone activity and spontaneously refold/reassemble with high conformational flexibility. (2) Whereas Hsp16.3 G89C mutant with inter-subunit disulfide bonds formed seems to lose the nature of chaperone proteins, i.e., under stress conditions, it neither acts as molecular chaperone nor spontaneously refolds/reassembles. Structural analysis indicated that the mutant exists as an unstable molten globule-like state, which incorrectly exposes hydrophobic surfaces and irreversibly tends to form aggregates that can be suppressed by the other molecular chaperone (alpha-crystallin). By contrast, reduction of disulfide bond in the Hsp16.3 G89C mutant can significantly recover its character as a molecular chaperone. In light of these results, we propose that disulfide bonds could severely disturb the structure/function of molecular chaperones like Hsp16.3. Our results might not only provide insights into understanding the structural basis of chaperone upon binding substrates, but also explain the observation that the occurrence of cysteine in molecular chaperones is much lower than that in other protein families, subsequently being helpful to understand the evolution of protein family.  相似文献   

2.
3.
Periplasmic proteins of Gram-negative bacteria like Escherichia coli are subjected to immediate affect of environmental fluctuation that may unfold proteins, due to the permeability of the outer membrane to small molecules. They are thus supposedly protected by certain molecular chaperones. Nevertheless, no homologues of typical molecular chaperones have so far been found in periplasm, and the recently reported chaperone activities of periplasmic protein disulfide isomerase (PDI) and peptidyl prolyl isomerase (PPI) seem to be too weak to satisfy such assumed needs. In an attempt to reveal whether periplasmic proteins exhibit certain unusual properties, we discovered that such proteins as a whole are highly resistant to aggregation under a wide variety of denaturing conditions. Furthermore, in an effort to unveil the nature behind this phenomenon we purified and examined four prominent periplasmic proteins. Our results demonstrate that these proteins unfold at rather mild denaturing conditions and expose hydrophobic surfaces during such unfolding process, but hardly form complexes with a typical molecular chaperone. Based on these observations, we propose that the periplasmic proteins have been evolved to resist the formation of aggregates when subjected to various denaturing conditions and molecular chaperones may thus not be needed in periplasm.  相似文献   

4.
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.  相似文献   

5.
Although we have a rather elaborate "working-cycle" for the 60 kDa molecular chaperones, which possess a cavity, and are called Anfinsen-cage-type chaperones to emphasize that they provide a closed, protected environment to help the folding of their substrates, our understanding of the molecular mechanism of how these chaperones help protein folding is still incomplete. The present study adds two novel elements to the mechanism of how Anfinsen-cage-type chaperones (members of the 60 kDa chaperone family) aid protein folding. It is proposed that (1) these chaperones do not generally unfold their targets, but by a multidirectional expansion preferentially loosen the tight, inner structure of the collapsed target protein; and (2) during the expansion water molecules enter the hydrophobic core of the target, this percolation being a key step in chaperone action. This study compares this chaperone-percolator model with existing explanations and suggests further experiments to test it. BioEssays 1999;21:959-965.  相似文献   

6.
Enteric bacteria such as Escherichia coli utilize various acid response systems to counteract the acidic environment of the mammalian stomach. To protect their periplasmic proteome against rapid acid-mediated damage, bacteria contain the acid-activated periplasmic chaperones HdeA and HdeB. Activation of HdeA at pH 2 was shown to correlate with its acid-induced dissociation into partially unfolded monomers. In contrast, HdeB, which has high structural similarities to HdeA, shows negligible chaperone activity at pH 2 and only modest chaperone activity at pH 3. These results raised intriguing questions concerning the physiological role of HdeB in bacteria, its activation mechanism, and the structural requirements for its function as a molecular chaperone. In this study, we conducted structural and biochemical studies that revealed that HdeB indeed works as an effective molecular chaperone. However, in contrast to HdeA, whose chaperone function is optimal at pH 2, the chaperone function of HdeB is optimal at pH 4, at which HdeB is still fully dimeric and largely folded. NMR, analytical ultracentrifugation, and fluorescence studies suggest that the highly dynamic nature of HdeB at pH 4 alleviates the need for monomerization and partial unfolding. Once activated, HdeB binds various unfolding client proteins, prevents their aggregation, and supports their refolding upon subsequent neutralization. Overexpression of HdeA promotes bacterial survival at pH 2 and 3, whereas overexpression of HdeB positively affects bacterial growth at pH 4. These studies demonstrate how two structurally homologous proteins with seemingly identical in vivo functions have evolved to provide bacteria with the means for surviving a range of acidic protein-unfolding conditions.  相似文献   

7.
8.
Folding on the chaperone: yield enhancement through loose binding   总被引:1,自引:0,他引:1  
A variety of small cageless chaperones have been discovered that can assist protein folding without the consumption of ATP. These include mini-chaperones (catalytically active fragments of larger chaperones), as well as small proteins such as alpha-casein and detergents acting as "artificial chaperones." These chaperones all possess exposed hydrophobic patches on their surface that act as recognition sites for misfolded proteins. They lack the complexity of chaperonins (that encapsulate proteins in their inner rings) and their study can offer insight into the minimal requirements for chaperone function. We use molecular dynamics simulations to investigate how a cageless chaperone, modeled as a sphere of tunable hydrophobicity, can assist folding of a substrate protein. We find that under steady-state (non-stress) conditions, cageless chaperones that bind to a single substrate protein increase folding yields by reducing the time the substrate spends in an aggregation-prone state in a dual manner: (a) by competing for aggregation-prone hydrophobic sites on the surface of a protein, hence reducing the time the protein spends unprotected in the bulk and (b) by accelerating folding rates of the protein. In both cases, the chaperone must bind to and hold the protein loosely enough to allow the protein to change its conformation and fold while bound. Loose binding may enable small cageless chaperones to help proteins fold and avoid aggregation under steady-state conditions, even at low concentrations, without the consumption of ATP.  相似文献   

9.
Inherited retinal dystrophy is a major cause of blindness worldwide. Recent molecular studies have suggested that protein folding and molecular chaperones might play a major role in the pathogenesis of these degenerations. Incorrect protein folding could be a common consequence of causative mutations in retinal degeneration disease genes, particularly mutations in the visual pigment rhodopsin. Furthermore, several retinal degeneration disease genes have recently been identified as putative facilitators of correct protein folding, molecular chaperones, on the basis of sequence homology. We also consider whether manipulation of chaperone levels or chaperone function might offer potential novel therapies for retinal degeneration.  相似文献   

10.
Molecular chaperones are highly conserved in all free-living organisms. There are many types of chaperones, and most are conveniently grouped into families. Genome sequencing has revealed that many organisms contain multiple members of both the DnaK (Hsp70) family and their partner J-domain protein (JDP) cochaperone, belonging to the DnaJ (Hsp40) family. Escherichia coli K-12 encodes three Hsp70 genes and six JDP genes. The coexistence of these chaperones in the same cytosol suggests that certain chaperone-cochaperone interactions are permitted, and that chaperone tasks and their regulation have become specialized over the course of evolution. Extensive genetic and biochemical analyses have greatly expanded knowledge of chaperone tasking in this organism. In particular, recent advances in structure determination have led to significant insights of the underlying complexities and functional elegance of the Hsp70 chaperone machine.  相似文献   

11.
Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.  相似文献   

12.
Several Gram-negative pathogens deploy type III secretion systems (TTSSs) as molecular syringes to inject effector proteins into host cells. Prior to secretion, some of these effectors are accompanied by specific type III secretion chaperones. The Yersinia enterocolitica TTSS chaperone SycT escorts the effector YopT, a cysteine protease that inactivates the small GTPase RhoA of targeted host cells. We solved the crystal structure of SycT at 2.5 angstroms resolution. Despite limited sequence similarity among TTSS chaperones, the SycT structure revealed a global fold similar to that exhibited by other structurally solved TTSS chaperones. The dimerization domain of SycT, however, differed from that of all other known TTSS chaperone structures. Thus, the dimerization domain of TTSS chaperones does not likely serve as a general recognition pattern for downstream processing of effector/chaperone complexes. Yersinia Yop effectors are bound to their specific Syc chaperones close to the Yop N termini, distinct from their catalytic domains. Here, we showed that the catalytically inactive YopT(C139S) is reduced in its ability to bind SycT, suggesting an ancillary interaction between YopT and SycT. This interaction could maintain the protease inactive prior to secretion or could influence the secretion competence and folding of YopT.  相似文献   

13.
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.  相似文献   

14.
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.  相似文献   

15.
The efficient export of proteins through the cytoplasmic membrane of Escherichia coli requires chaperones to maintain protein precursors in a translocation-competent conformation. In addition to SecB, the major chaperone facilitating export of particular precursors, heat shock-induced chaperones DnaK-DnaJ and GroEL-GroES are also involved in this process. By use of secB'-lacZ gene fusions and immunoprecipitation experiments, SecB production was studied in E. coli strains containing conditional lethal mutations in chaperone or sec genes. While the loss of heat shock chaperones resulted in an increased production of SecB, mutations in sec genes showed only minor effects on SecB synthesis. Neither the plasmid-mediated overexpression of precursors of exoproteins nor the overexpression of secB altered the synthesis of SecB. These results suggest that under conditions where chaperones become depleted, E. coli responds by raising the expression of secB. These data confirm the supposed synergy of different chaperones involved in protein export.  相似文献   

16.
Molecular chaperones recognize and bind destabilized proteins. This can be especially important for proteins whose stability is reduced by mutations. We focused our study on a major chaperone system, RAC-Ssb, which assists folding of newly synthesized polypeptides in the yeast cytosol. A sensitive phenotypic assay, the red color of Ade2 mutants, was used to screen for variants with metabolic activity dependent on RAC-Ssb. None of the Ade2 mutants were found to exhibit lower metabolic activity after inactivation of RAC-Ssb. In order to explicitly test the relationship between protein instability and activity of chaperones, a series of temperature sensitive Ade2 mutants were tested in the presence or absence of RAC-Ssb. The growth of Ade2(ts) mutants at elevated temperatures was enhanced if chaperones were missing. Similar pattern was found for thermally sensitive mutants of several other genes. Because RAC-Ssb normally supports the folding of proteins, it appears paradoxical that catabolic activity of mutants is reduced when these chaperones are present. We suggest that under non-stressful conditions, molecular chaperones are tuned to support folding of native proteins, but not that of mutated ones.  相似文献   

17.
Molecular chaperones are a special class of heat shock proteins (Hsp) that assist the folding and formation of the quaternary structure of other proteins both in vivo and in vitro. However, some chaperones are complex oligomeric proteins, and one of the intriguing questions is how the chaperones fold. The representatives of the Escherichia coli chaperone system GroEL (Hsp60) and GroES (Hsp10) have been studied most intensively. GroEL consists of 14 identical subunits combined into two interacting ring-like structures of seven subunits each, while the co-chaperone GroES interacting with GroEL consists of seven identical subunits combined into a dome-like oligomeric structure. In spite of their complex quaternary structure, GroEL and GroES fold well both in vivo and in vitro. However, the specific oligomerization of GroEL subunits is dependent on ligands and external conditions. This review analyzes the literature and our own data on the study of unfolding (denaturation) and refolding (renaturation) processes of these molecular chaperones and the effect of ligands and solvent composition. Such analysis seems to be useful for understanding the folding mechanism not only of the GroEL/GroES complex, but also of other oligomeric protein complexes.  相似文献   

18.
Balanced protein synthesis and degradation are crucial for proper cellular function. Protein synthesis is tightly coupled to energy status and nutrient levels by the mammalian target of rapamycin complex 1 (mTORC1). Quality of newly synthesized polypeptides is maintained by the molecular chaperone and ubiquitin-proteasome systems. Little is known about how cells integrate information about the quantity and quality of translational products simultaneously. We demonstrate that cells distinguish moderate reductions in protein quality from severe protein misfolding using molecular chaperones to differentially regulate mTORC1 signaling. Moderate reduction of chaperone availability enhances mTORC1 signaling, whereas stress-induced complete depletion of chaperoning capacity suppresses mTORC1 signaling. Molecular chaperones regulate mTORC1 assembly in coordination with nutrient availability. This mechanism enables mTORC1 to rapidly detect and respond to environmental cues while also sensing intracellular protein misfolding. The tight linkage between protein quality and quantity control provides a plausible mechanism coupling protein misfolding with metabolic dyshomeostasis.  相似文献   

19.
TorsinA, a protein with homology to yeast heat shock protein104, has previously been demonstrated to colocalize with alpha-synuclein in Lewy bodies, the pathological hallmark of Parkinson's disease. Heat shock proteins are a family of chaperones that are both constitutively expressed and induced by stressors, and that serve essential functions for protein refolding and/or degradation. Here, we demonstrate that, like torsinA, specific molecular chaperone heat shock proteins colocalize with alpha-synuclein in Lewy bodies. In addition, using a cellular model of alpha-synuclein aggregation, we demonstrate that torsinA and specific heat shock protein molecular chaperones colocalize with alpha-synuclein immunopositive inclusions. Further, overexpression of torsinA and specific heat shock proteins suppress alpha-synuclein aggregation in this cellular model, whereas mutant torsinA has no effect. These data suggest that torsinA has chaperone-like activity and that the disease-associated GAG deletion mutant has a loss-of-function phenotype. Moreover, these data support a role for chaperone proteins, including torsinA and heat shock proteins, in cellular responses to neurodegenerative inclusions.  相似文献   

20.
Hsp100 chaperones cooperate with the Hsp70 chaperone system to disaggregate and reactivate heat-denatured aggregated proteins to promote cell survival after heat stress. The homology models of Hsp100 disaggregases suggest the presence of a conserved network of ionic interactions between the first nucleotide binding domain (NBD1) and the coiled-coil middle subdomain, the signature domain of disaggregating chaperones. Mutations intended to disrupt the putative ionic interactions in yeast Hsp104 and bacterial ClpB disaggregases resulted in remarkable changes of their biochemical properties. These included an increase in ATPase activity, a significant increase in the rate of in vitro substrate renaturation, and partial independence from the Hsp70 chaperone in disaggregation. Paradoxically, the increased activities resulted in serious growth impediments in yeast and bacterial cells instead of improvement of their thermotolerance. Our results suggest that this toxic activity is due to the ability of the mutated disaggregases to unfold independently from Hsp70, native folded proteins. Complementary changes that restore particular salt bridges within the suggested network suppressed the toxic effects. We propose a novel structural aspect of Hsp100 chaperones crucial for specificity and efficiency of the disaggregation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号