首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.  相似文献   

2.
3.
Using the proteomic tandem affinity purification (TAP) method, we have purified the Saccharomyces cerevisie U2 snRNP-associated splicing factors SF3a and SF3b. While SF3a purification revealed only the expected subunits Prp9p, Prp11p and Prp21p, yeast SF3b was found to contain only six subunits, including previously known components (Rse1p, Hsh155p, Cus1p, Hsh49p), the recently identified Rds3p factor and a new small essential protein (Ysf3p) encoded by an unpredicted split ORF in the yeast genome. Surprisingly, Snu17p, the proposed yeast orthologue of the seventh human SF3b subunit, p14, was not found in the yeast complex. TAP purification revealed that Snu17p, together with Bud13p and a newly identified factor, Pml1p/Ylr016c, form a novel trimeric complex. Subunits of this complex were not essential for viability. However, they are required for efficient splicing in vitro and in vivo. Furthermore, inactivation of this complex causes pre-mRNA leakage from the nucleus. The corresponding complex was named pre-mRNA REtention and Splicing (RES). The presence of RES subunit homologues in numerous eukaryotes suggests that its function is evolutionarily conserved.  相似文献   

4.
We have investigated the role of a novel temperature-sensitive splicing mutation, prp18. We had previously demonstrated that an accumulation of the lariat intermediate of splicing occurred at the restrictive temperature in vivo. We have now used the yeast in vitro splicing system to show that extracts from this mutant strain are heat labile for the second reaction of splicing. The heat inactivation of prp18 extracts results from loss of activity of an exchangeable component. Inactivated prp18 extracts are complemented by heat-inactivated extracts from other mutants or by fractions from wild-type extracts. In heat-inactivated prp18 extracts, 40S splicing complexes containing lariat intermediate and exon 1 can assemble. The intermediates in this 40S complex can be chased to products by complementing extracts in the presence of ATP. Both complementation of extracts and chasing of the isolated prp18 spliceosomes takes place with micrococcal nuclease-treated extracts. Furthermore, the complementation profile with fractions of wild-type extracts indicates that the splicing defect results from a mutation in a previously designated factor required for the second step of splicing. The isolation of this mutant as temperature-sensitive lethal has also facilitated cloning of the wild-type allele by complementation.  相似文献   

5.
6.
Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root‐bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6‐1, which defines a locus essential for osmotic stress tolerance. sos6‐1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase‐like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6‐1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress.  相似文献   

7.
8.
9.
10.
Nuclear speckles are known to be the storage sites of mRNA splicing regulators. We report here the identification and characterization of a novel speckle protein, referred to as NSrp70, based on its subcellular localization and apparent molecular weight. This protein was first identified as CCDC55 by the National Institutes of Health Mammalian Gene Collection, although its function has not been assigned. NSrp70 was colocalized and physically interacted with SC35 and ASF/SF2 in speckles. NSrp70 has a putative RNA recognition motif, the RS-like region, and two coiled-coil domains, suggesting a role in RNA processing. Accordingly, using CD44, Tra2β1 and Fas constructs as splicing reporter minigenes, we found that NSrp70 modulated alternative splice site selection in vivo. The C-terminal 10 amino acids (531-540), including (536)RD(537), were identified as a novel nuclear localization signal, and the region spanning 290-471 amino acids was critical for speckle localization and binding to SC35 and ASF/SF2. The N-terminal region (107-161) was essential for the pre-mRNA splicing activity. Finally, we found that knockout of NSrp70 gene in mice led to a lack of progeny, including fetal embryos. Collectively, we demonstrate that NSrp70 is a novel splicing regulator and essentially required early stage of embryonic development.  相似文献   

11.
Fine-structure mapping of the capsid-specific mRNAs from adeno-associated virus (AAV) revealed an alternate splicing pattern in these RNAs. S1 nuclease and primer extension analyses showed that splicing of these mRNAs occurs at acceptor sites at nucleotide 2228 (major splice) or 2201 (minor splice). Both splice acceptors were ligated to the same 55-nucleotide leader in mature mRNAs. Both species were present in equal amounts in mRNA derived from AAV plasmid-transfected cells. However, when adenovirus infection accompanied the DNA transfection, the major splice predominated over the minor splice. Using cDNA clones of both the major and minor spliced mRNAs, we demonstrated that the largest AAV capsid protein, VP1, was derived from the minor spliced mRNA. The other capsid proteins, VP2 and VP3, came predominantly from the major spliced mRNA. These results, which describe the previously undetected minor splice, provide a mechanism for the production of all three AAV virion proteins.  相似文献   

12.
We previously reported the isolation of PRP28, a gene in Saccharomyces cerevisiae whose activity is required for the first step of nuclear mRNA splicing in vivo. Sequence analysis revealed that PRP28 is included in the 'DEAD-box' gene family, members of which are thought to function as ATP-dependent RNA helicases. Genetic interactions led us to suggest that PRP28 is functionally associated with the U4/U5/U6 snRNP. We have now purified the PRP28 protein from S. cerevisiae and demonstrated that it is required for the first step of splicing in vitro. Interestingly, PRP28 is not a stably associated snRNP protein. Strand displacement assays indicate that PRP28 does not exhibit RNA helicase activity, suggesting that an additional factor or factors may be required for its activation.  相似文献   

13.
14.
15.
An essential pre-mRNA splicing factor, the product of the PRP38 gene, has been genetically identified in a screen of temperature-sensitive mutants of Saccharomyces cerevisiae. Shifting temperature-sensitive prp38 cultures from 23 to 37 degrees C prevents the first cleavage-ligation event in the excision of introns from mRNA precursors. In vitro splicing inactivation and complementation studies suggest that the PRP38-encoded factor functions, at least in part, after stable splicing complex formation. The PRP38 locus contains a 726-bp open reading frame coding for an acidic 28-kDa polypeptide (PRP38). While PRP38 lacks obvious structural similarity to previously defined splicing factors, heat inactivation of PRP38, PRP19, or any of the known U6 (or U4/U6) small nuclear ribonucleoprotein-associating proteins (i.e., PRP3, PRP4, PRP6, and PRP24) leads to a common, unexpected consequence: intracellular U6 small nuclear RNA (snRNA) levels decrease as splicing activity is lost. Curiously, U4 snRNA, normally extensively base paired with U6 snRNA, persists in the virtual absence of U6 snRNA.  相似文献   

16.
17.

Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.  相似文献   

18.
The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.  相似文献   

19.
The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.  相似文献   

20.
Identification of a regulated pathway for nuclear pre-mRNA turnover   总被引:31,自引:0,他引:31  
We have identified a nuclear pathway that rapidly degrades unspliced pre-mRNAs in yeast. This involves 3'-->5' degradation by the exosome complex and 5'-->3' degradation by the exonuclease Rat1p. 3'-->5' degradation is normally the major pathway and is regulated in response to carbon source. Inhibition of pre-mRNA degradation resulted in increased levels of pre-mRNAs and spliced mRNAs. When splicing was inhibited by mutation of a splicing factor, inhibition of turnover resulted in 20- to 50-fold accumulation of pre-mRNAs, accompanied by increased mRNA production. Splicing of a reporter construct with a 3' splice site mutation was also increased on inhibition of turnover, showing competition between degradation and splicing. We propose that nuclear pre-mRNA turnover represents a novel step in the regulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号