首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease μ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance.  相似文献   

2.
3.
A key event in programmed cell death is the translocation of the apoptotic Bax protein from the cytosol towards mitochondria. The first helix localized at the N-terminus of Bax (Bax-α1) can act here as an addressing sequence, which directs activated Bax towards the mitochondrial surface. Solid state NMR (nuclear magnetic resonance), CD (circular dichroism) and ATR (attenuated total reflection) spectroscopy were used to elucidate this recognition process of a mitochondrial membrane system by Bax-α1. Two potential target membranes were studied, with the outer mitochondrial membrane (OM) mimicked by neutral phospholipids, while mitochondrial contact sites (CS) contained additional anionic cardiolipin. 1H and 31P magic angle spinning (MAS) NMR revealed Bax-α1 induced pronounced perturbations in the lipid headgroup region only in presence of cardiolipin. Bax-α1 could not insert into CS membranes but at elevated concentrations it inserted into the hydrophobic core of cardiolipin-free OM vesicles, thereby adopting β-sheet-like features, as confirmed by ATR. CD studies revealed, that the cardiolipin mediated electrostatic locking of Bax-α1 at the CS membrane surface promotes conformational changes into an α-helical state; a process which seems to be necessary to induce further conformational transition events in activated Bax which finally causes irreversible membrane permeabilization during the mitochondrial apoptosis.  相似文献   

4.
Equine β-lactoglobulin (ELG) assumes non-native helices during refolding and in partially folded states. Previously, circular dichroism (CD) combined with site-directed mutagenesis identified helical regions in the acid- and cold-denatured states of ELG. It is also known that a fragment of ELG, CHIBL (residues 88-142), has a structure similar to that of the cold-denatured state. For the study reported herein, the structure of a shorter fragment, CHIBLΔF (residues 97-142), was investigated by CD and nuclear magnetic resonance spectroscopy. The secondary chemical shifts clearly showed that non-native α-helices are present in two different regions, residues 98-107 and 114-135, and are connected by a native disulfide bond. The CD spectra of two peptides that correspond to the helical regions are characterized by weak helical signatures, and the sum of their CD spectra is nearly the same as the spectrum of disulfide-reduced CHIBLΔF. Therefore, the non-native helices are stabilized by the disulfide, and non-native helix formation may occur only during the refolding of the disulfide-intact protein. Supporting this conclusion is the observation that tear lipocalin, a homologue of ELG that lacks the disulfide, does not form non-native helices during folding.  相似文献   

5.
6.
Pro‐apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site‐specific disulfide crosslinking, compartment‐specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3‐in‐groove dimer interface on the MOM surface similar to that observed in crystals. However, after the α5 helix was released into the MOM, the remaining interface with α2, α3, and α4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel α9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3‐in‐groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, α9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by α9 insertion into the MOM and localization to the pore rim. Therefore, the BH3‐in‐groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by α9 dimerization at the rim.  相似文献   

7.
Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six α-helices (α1-α6) out of which α2-α5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the α1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that α1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the α5 helix and the linker between α3 and α4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by α1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.  相似文献   

8.
Research efforts to deduce the function of the prion protein (PrPc) in knock-out mouse mutants have revealed that large deletions in the PrPc genome result in the ectopic neuronal expression of the prion-like protein Doppel (Dpl). In our analysis of one such line of mutant mice, Ngsk Prnp0/0 (NP0/0), we demonstrate that the ectopic expression of Dpl in brain neurons induces significant levels of cerebellar Purkinje cell (PC) death as early as six months after birth. To investigate the involvement of the mitochondrial proapoptotic factor BAX in the Dpl-induced apoptosis of PCs, we have analyzed the progression of PC death in aging NP0/0:Bax-/- double knockout mutants. Quantitative analysis of cell numbers showed that significantly more PCs survived in NP0/0:Bax-/- double mutants than in the NP0/0:Bax+/+ mutants. However, PC numbers were not restored to wildtype levels or to the increased number of PCs observed in Bax-/- mutants. The partial rescue of NP0/0 PCs suggests that the ectopic expression of Dpl induces both BAX-dependent and BAX-independent pathways of cell death. The activation of glial cells that is shown to be associated topographically with Dpl-induced PC death in the NP0/0:Bax+/+ mutants is abolished by the loss of Bax expression in the double mutant mice, suggesting that chronic inflammation is an indirect consequence of Dpl-induced PC death.  相似文献   

9.
The positively charged lysine at the C-terminals of three long α-helices (5-15, 25-35, and 88-99) was replaced with alanine (K13A, K33A, K97A) or aspartic acid (K13D, K33D, K97D) in hen lysozyme by genetic engineering. The denaturation transition point (Tm) and Gibbs energy change ΔG of the mutant lysozymes decreased remarkably, suggesting that the positive charge at the C-terminals of helices is involved in the stabilization of the helix dipole. On the other hand, the non-charged asparagine at the N-terminal of the long α-helices (25-35 and 88-99) was replaced with negatively charged aspartic acid (N27D and N93D). The Tm and ΔG of N27D increased, suggesting that the dipole moment of the N-terminal of the helices is diminished by replacement with negatively charged amino acid strengthening the stability of the helices. The stabilities of those hen egg white lysozymes mutated at the N- or C-terminal sites of the three long α-helices were related with their secretion amounts in yeast (Pichia pastoris). The secretion amounts of these mutant lysozymes in yeast were closely correlated with their stability.  相似文献   

10.
Zhu X  Wu G  Zeng W  Xue H  Chen B 《Journal of lipid research》2005,46(6):1303-1311
Apolipoprotein A-I(Milano) (A-I(M)) (R173C), a natural mutant of human apolipoprotein A-I (apoA-I), and five other cysteine variants of apoA-I at residues 52 (S52C), 74 (N74C), 107 (K107C), 129 (G129C), and 195 (K195C) were generated. Cysteine residues were incorporated in each of the various helices at the same helical wheel position as for the substitution in A-I(M). The secondary structural properties of the monomeric mutants, their abilities to bind lipid and to promote cholesterol efflux from THP-1 macrophages, and the possibility of antiperoxidation were investigated. Results showed that the alpha helical contents of all of the cysteine mutants were similar to that of wild-type apoA-I (wtapoA-I). The cysteine variant of A-I(M) at residue 173 [A-I(M)(R173C)] exhibited weakened structural stability, whereas A-I(G129C) a more stable structure than wtapoA-I. A-I(G129C) and A-I(K195C) exhibited significantly impaired capabilities to bind lipid compared with wtapoA-I. A-I(K107C) possessed a higher capacity to promote cholesterol efflux from macrophages than wtapoA-I, and A-I(M)(R173C) and A-I(K195C) exhibited an impaired efflux capability. Neither A-I(M)(R173C) nor any other cysteine mutant could resist oxidation against lipoxygenase. In summary, in spite of the similar mutant position on the helix, these variants exhibited different structural features or biological activities, suggesting the potential influence of the local environment of mutations on the whole polypeptide chain.  相似文献   

11.
Summary We report the isolation of LexA mutant proteins with impaired repressor function. These mutant proteins were obtained by transforming a LexA-deficient recA-lacZ indicator strain with a randomly mutagenized plasmid harbouring the lexA gene and subsequent selection on MacConkey-lactose indicator plates. A total of 24 different lexA(Def) missense mutations were identified. All except three mutant proteins are produced in near-normal amounts suggesting that they are fairly resistant to intracellular proteases. All lexA(Def) missense mutations are situated within the first 67 amino acids of the amino-terminal DNA binding domain. The properties of an intragenic deletion mutant suggest that the part of the amino-terminal domain important for DNA recognition or domain folding should extent at least to amino acids 69 or 70. A recent 2D-NMR study (Lamerichs et al. 1989) has identified three a helices in the DNA binding domain of LexA. The relative orientation of two of them (helices 2 and 3) is reminiscent of, but not identical to, the canonical helix-turn-helix motif suggesting nevertheless that helix 3 might be involved in DNA recognition. The distribution of the lexA(Def) missense mutations along the first 67 amino-terminal amino acids indeed shows some clustering within helix 3, since 8 out of the 24 different missense mutations are found in this helix. However one mutation in front of helix 1 and five mutations between amino acids 61 and 67 suggest that elements other than helices 2 and 3 may be important for DNA binding.  相似文献   

12.
More than 50% of RNA secondary structure is estimated to be A-form helices, which are linked together by various junctions. Here we describe a protocol for computing three interhelical Euler angles describing the relative orientation of helices across RNA junctions. 5' and 3' helices, H1 and H2, respectively, are assigned based on the junction topology. A reference canonical helix is constructed using an appropriate molecular builder software consisting of two continuous idealized A-form helices (iH1 and iH2) with helix axis oriented along the molecular Z-direction running toward the positive direction from iH1 to iH2. The phosphate groups and the carbon and oxygen atoms of the sugars are used to superimpose helix H1 of a target interhelical junction onto the corresponding iH1 of the reference helix. A copy of iH2 is then superimposed onto the resulting H2 helix to generate iH2'. A rotation matrix R is computed, which rotates iH2' into iH2 and expresses the rotation parameters in terms of three Euler angles α(h), β(h) and γ(h). The angles are processed to resolve a twofold degeneracy and to select an overall rotation around the axis of the reference helix. The three interhelical Euler angles define clockwise rotations around the 5' (-γ(h)) and 3' (α(h)) helices and an interhelical bend angle (β(h)). The angles can be depicted graphically to provide a 'Ramachandran'-type view of RNA global structure that can be used to identify unusual conformations as well as to understand variations due to changes in sequence, junction topology and other parameters.  相似文献   

13.
Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.  相似文献   

14.
Suzuki M  Youle RJ  Tjandra N 《Cell》2000,103(4):645-654
Apoptosis is stimulated by the insertion of Bax from the cytosol into mitochondrial membranes. The solution structure of Bax, including the putative transmembrane domain at the C terminus, was determined in order to understand the regulation of its subcellular location. Bax consists of 9 alpha helices where the assembly of helices alpha1 through alpha 8 resembles that of the apoptosis inhibitor, Bcl-x(L). The C-terminal alpha 9 helix occupies the hydrophobic pocket proposed previously to mediate heterodimer formation and bioactivity of opposing members of the Bcl-2 family. The Bax structure shows that the orientation of helix alpha 9 provides simultaneous control over its mitochondrial targeting and dimer formation.  相似文献   

15.
The gene coding for the integral membrane protein bacterioopsin (Bop), that is composed of seven transmembrane helices, was expressed in the halophilic archaeon Haloferax volcanii as a fusion protein with the halobacterial enzyme dihydrofolate reductase and with the cellulose binding domain of Clostridium thermocellum cellulosome. In each case, bacterioopsin was present both in the membrane and in the cytoplasmic fractions. Pulse-chase labeling experiments showed that the fusion protein in the cytoplasmic fraction is the precursor of the membrane-bound species. Bacterioopsin mutants that lack the seventh helix (BopDelta7) were found to accumulate only in the cytoplasmic fraction, whereas bacterioopsin mutants that lack either helices four and five (BopDelta4-5), or helices one and two (BopDelta1-2), were found in the cytoplasmic as well as in the membrane fractions. The seventh helix, when expressed alone, could target in trans the insertion of a separately expressed bacterioopsin mutant protein that has only the first six helices. These results support a model in which bacterioopsin is produced in H. volcanii as a soluble protein and in which its insertion into the membrane occurs post-translationally. According to this model, membrane insertion is directed by the seventh helix.  相似文献   

16.
In Escherichia coli and mitochondria, the molecular chaperone DnaJ is required not only for protein folding but also for selective degradation of certain abnormal polypeptides. Here we demonstrate that in the yeast cytosol, the homologous chaperone Ydj1 is also required for ubiquitin-dependent degradation of certain abnormal proteins. The temperature-sensitive ydj1-151 mutant showed a large defect in the overall breakdown of short-lived cell proteins and abnormal polypeptides containing amino acid analogs, especially at 38 degrees C. By contrast, the degradation of long-lived cell proteins, which is independent of ubiquitin, was not altered nor was cell growth affected. The inactivation of Ydj1 markedly reduced the rapid, ubiquitin-dependent breakdown of certain beta-galactosidase (beta-gal) fusion polypeptides. Although degradation of N-end rule substrates (arginine-beta-gal and leucine-beta-gal) and the B-type cyclin Clb5-beta-gal occurred normally, degradation of the abnormal polypeptide ubiquitin-proline-beta-gal (Ub-P-beta-gal) and that of the short-lived normal protein Gcn4 were inhibited. As a consequence of reduced degradation of Ub-P-beta-gal, the beta-gal activity was four to five times higher in temperature-sensitive ydj1-151 mutant cells than in wild-type cells; thus, the folding and assembly of this enzyme do not require Ydj1 function. In wild-type cells, but not in ydj1-151 mutant cells, this chaperone is associated with the short-lived substrate Ub-P-beta-gal and not with stable beta-gal constructs. Furthermore, in the ydj1-151 mutant, the ubiquitination of Ub-P-beta-gal was blocked and the total level of ubiquitinated protein in the cell was reduced. Thus, Ydj1 is essential for the ubiquitin-dependent degradation of certain proteins. This chaperone may facilitate the recognition of unfolded proteins or serve as a cofactor for certain ubiquitin-ligating enzymes.  相似文献   

17.
Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.  相似文献   

18.
The apoptosis gateway protein Bax normally exists in the cytosol as a globular shaped monomer composed of nine α-helices. During apoptosis, Bax translocates to the mitochondria, forms homo-oligomers, and subsequently induces mitochondrial damage. The mechanism of Bax mitochondrial translocation remains unclear. Among the nine α-helices of Bax, helices 4, 5, 6, and 9 are capable of targeting a heterologous protein to mitochondria. However, only helices 6 and 9 can independently direct the oligomerized Bax to the mitochondria. Although Bax mitochondrial translocation can still proceed with mutations in either helix 6 or helix 9, combined mutations completely abolished mitochondrial targeting in response to activating signals. Using a proline mutagenesis scanning analysis, we demonstrated that conformational changes were sufficient to cause Bax to move from the cytosol to the mitochondria. Moreover, we found that homo-oligomerization of Bax contributed to its mitochondrial translocation. These results suggest that Bax is targeted to the mitochondria through the exposure of one or both of the two functional mitochondrial targeting sequences in a conformational change-driven and homo-oligomerization-aided process.  相似文献   

19.
Membrane-insertion fragments of Bcl-xL, Bax, and Bid   总被引:8,自引:0,他引:8  
Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapoptotic Bcl-x(L) and proapoptotic Bax and Bid, that correspond to defined alpha helices in the structure of their soluble forms. According to prediction methods, there are only two putative TM fragments in Bcl-x(L) and Bax (the C-terminal alpha helix and alpha-helix 5) and one in activated tBid (alpha-helix 6). The rest of their sequence, including the second helix of the pore-forming domain, displays only weak hydrophobic peaks, which are below the prediction threshold. Subsequent analysis by glycosylation mapping of single alpha-helix segments in a model chimeric system confirms the above predictions and allows finding an extra TM fragment made of helix alpha1 of Bax. Surprisingly, the amphipathic helices alpha6 of Bcl-x(L) and Bax and alpha7 of Bid do insert in membranes only as part of the alpha5-alpha6 (Bcl-x(L) and Bax) or alpha6-alpha7 (Bid) hairpins but not when assayed individually. This behavior suggests a synergistic insertion and folding of the two helices of the hairpin that could be due to charge complementarity and additional stability provided by turn-inducing residues present at the interhelical region. Although these data come from chimeric systems, they show direct potentiality for acquiring a membrane inserted state. Thus, the above fragments should be considered for the definition of plausible models of the active, membrane-bound species of Bcl-2 proteins.  相似文献   

20.
Yano Y  Yamamoto A  Ogura M  Matsuzaki K 《Biochemistry》2011,50(32):6806-6814
Thermodynamic parameters for the insertion and self-association of transmembrane helices are important for understanding the folding of helical membrane proteins. The lipid composition of bilayers would significantly affect these fundamental processes, although how is not well understood. Experimental systems using model transmembrane helices and lipid bilayers are useful for measuring and interpreting thermodynamic parameters (ΔG, ΔH, ΔS, and ΔC(p)) for the processes. In this study, the effect of the charge, phase, acyl chain unsaturation, and lateral pressure profile of bilayers on the membrane partitioning of the transmembrane helix (AALALAA)(3) was examined. Furthermore, the effect of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) on the thermodynamics for insertion and self-association of the helix in host membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) was investigated in detail. Interbilayer transfer of the helix monomer from POPC to POPC/POPE (1/1) bilayers was unfavorable (ΔG = +4.5 ± 2.9 kJ mol(-1) at 35 °C) due to an increase in enthalpy (ΔH = +31.1 ± 2.1 kJ mol(-1)). On the other hand, antiparallel dimerization of the helices in POPC/POPE (1/1) bilayers was enhanced compared with that in POPC bilayers (ΔΔG = -4.9 ± 0.2 kJ mol(-1) at 35 °C) due to a decrease in enthalpy (ΔΔH = -33.2 ± 1.5 kJ mol(-1)). A greater thickness of POPC/POPE bilayers only partially explained the observed effects. The residual effects could be related to changes in other physical properties such as higher lateral pressure in the hydrocarbon core in the PE-containing membrane. The origin of the enthalpy-driven "lipophobic" force that modulates the insertion and association of transmembrane helices will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号