首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To access the genetic and biochemical potential of soil microorganisms by culture-independent methods, a 24,546-member library in Escherichia coli with DNA extracted directly from soil had previously been constructed (M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, M. S. Osburne, J. Clardy, J. Handelsman, and R. M. Goodman, Appl. Environ. Microbiol. 66:2541-2547, 2000). Three clones, P57G4, P89C8, and P214D2, produced colonies with a dark brown melanin-like color. We fractionated the culture supernatant of P57G4 to identify the pigmented compound or compounds. Methanol extracts of the acid precipitate from the culture supernatant contained a red and an orange pigment. Structural analysis revealed that these were triaryl cations, designated turbomycin A and turbomycin B, respectively; both exhibited broad-spectrum antibiotic activity against gram-negative and gram-positive organisms. Mutagenesis, subcloning, and sequence analysis of the 25-kb insert in P57G4 demonstrated that a single open reading frame was necessary and sufficient to confer production of the brown, orange, and red pigments on E. coli; the predicted product of this sequence shares extensive sequence similarity with members of the 4-hydroxyphenylpyruvate dioxygenase (4HPPD) family of enzymes. Another member of the same family of genes, lly, which is required for production of the hemolytic pigment in Legionella pneumophila, also conferred production of turbomycin A and B on E. coli. We further demonstrated that turbomycin A and turbomycin B are produced from the interaction of indole, normally secreted by E. coli, with homogentisic acid synthesized by the 4HPPD gene products. The results demonstrate successful heterologous expression of DNA extracted directly from soil as a means to access previously uncharacterized small organic compounds, serving as an example of a chimeric pathway for the generation of novel chemical structures.  相似文献   

2.
Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol–gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.  相似文献   

3.
To access to the microbial genetic resources of deep-sea sediment by a culture-independent approach, the sediment DNA was extracted and cloned into fosmid vector (pCC1FOS) generating a library of 39,600 clones with inserts of 24–45 kb. The clone fss6 producing red-brown pigment was isolated and characterized. The pigment was identified as melanin according to its physico-chemical characteristics. Subcloning and sequences analyses of fss6 demonstrated that one open reading frame (ORF2) was responsible for the pigment production. The deduced protein from ORF2 revealed significant amino acid similarity to the 4-hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina loihiensis. Further study demonstrated that the production of melanin was correlated with homogentistic acid (HGA). The p-hydroxyphenylpyruvate produced by the Escherichia coli host was converted to HGA through the oxidation reaction of introduced HPPD. The results demonstrate that expression of DNA extracted directly from the environment might generate applicable microbial gene products. The construction and analysis of the metagenomic library from deep-sea sediment contributed to our understanding for the reservoir of unexploited deep-sea microorganisms.  相似文献   

4.
Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5′ leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5′ side of the cleavage site (N(− 4)) and the RNase P protein (P protein) subunit. B. subtilis RNase P has a higher affinity for pre-tRNA with adenosine at N(− 4), and this binding preference is amplified at physiological divalent ion concentrations. Measurements of pre-tRNA-containing adenosine analogs at N(− 4) indicate that specificity arises from a combination of hydrogen bonding to the N6 exocyclic amine of adenosine and steric exclusion of the N2 amine of guanosine. Mutagenesis of B. subtilis P protein indicates that F20 and Y34 contribute to selectivity at N(− 4). The hydroxyl group of Y34 enhances selectivity, likely by forming a hydrogen bond with the N(− 4) nucleotide. The sequence preference of E. coli RNase P is diminished, showing a weak preference for adenosine and cytosine at N(− 4), consistent with the substitution of Leu for Y34 in the E. coli P protein. This is the first identification of a sequence-specific contact between P protein and pre-tRNA that contributes to molecular recognition of RNase P. Additionally, sequence analyses reveal that a greater-than-expected fraction of pre-tRNAs from both E. coli and B. subtilis contains a nucleotide at N(− 4) that enhances RNase P affinity. This observation suggests that specificity at N(− 4) contributes to substrate recognition in vivo. Furthermore, bioinformatic analyses suggest that sequence-specific contacts between the protein subunit and the leader sequences of pre-tRNAs may be common in bacterial RNase P and may lead to species-specific substrate recognition.  相似文献   

5.
Hydroxymandelate synthase (HMS) catalyzes the committed step in the formation of para-hydroxyphenylglycine, a recurrent substructure of polycyclic non-ribosomal peptide antibiotics such as vancomycin. HMS uses the same substrates as 4-hydroxyphenylpyruvate dioxygenase (HPPD), 4-hydroxyphenylpyruvate (HPP) and O2, and also conducts a dioxygenation reaction. The difference between the two lies in the insertion of the second oxygen atom, HMS directing this atom onto the benzylic carbon of the substrate while HPPD hydroxylates the aromatic C1 carbon. We have shown that HMS will bind NTBC, a herbicide/therapeutic whose mode of action is based on the inhibition of HPPD. This occurs despite residue differences at the active site of HMS from those known to contact the inhibitor in HPPD. Moreover, the minimal kinetic mechanism for association of NTBC to HMS differs only slightly from that observed with HPPD. The primary difference is that three charge-transfer species are observed to accumulate during association. The first reversible complex forms with a weak dissociation constant of 520 μM, the subsequent two charge-transfer complexes form with rate constants of 2.7 s−1 and 0.67 s−1. As was the case for HPPD, the final complex has the most intense charge-transfer, is not observed to dissociate, and is unreactive towards dioxygen.  相似文献   

6.
p-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism and is the molecular target site of β-triketone pharmacophores used to treat hypertyrosinemia in humans. In plants, HPPD is involved in the biosynthesis of prenyl quinones and tocopherols, and is the target site of β-triketone herbicides. The β-triketone-rich essential oil of manuka (Leptospermum scoparium), and its components leptospermone, grandiflorone and flavesone were tested for their activity in whole-plant bioassays and for their potency against HPPD. The achlorophyllous phenotype of developing plants exposed to manuka oil or its purified β-triketone components was similar to that of plants exposed to the synthetic HPPD inhibitor sulcotrione. The triketone-rich fraction and leptospermone were approximatively 10 times more active than that of the crude manuka oil, with I50 values of 1.45, 0.96 and 11.5 μg mL−1, respectively. The effect of these samples on carotenoid levels was similar. Unlike their synthetic counterpart, steady-state O2 consumption experiments revealed that the natural triketones were competitive reversible inhibitors of HPPD. Dose-response curves against the enzyme activity of HPPD provided apparent I50 values 15.0, 4.02, 3.14, 0.22 μg mL−1 for manuka oil, triketone-rich fraction, leptospermone and grandiflorone, respectively. Flavesone was not active. Structure-activity relationships indicate that the size and lipophilicity of the side-chain affected the potency of the compounds. Computational analysis of the catalytic domain of HPPD indicates that a lipophilic domain proximate from the Fe2+ favors the binding of ligands with lipophilic moieties.  相似文献   

7.
Co-culture of Penicillium sp. HSD07B and Candida tropicalis resulted in the production of a red pigment consisting of six components as determined by TLC and HPLC. The pigment showed no acute toxicity in mice and was mot mutagenic in the Ames test. The pigment was stable between pH 2 and 10 and temperatures of 10-100 °C and exhibited good photo-stability and resistance to oxidization by hydrogen peroxide and reduction by Na2SO3. Glucose and ratio of C. tropicalis to strain HSD07B (w/w) in the inoculum were the important factors influencing production of the pigment. Under optimized conditions, a pigment yield of 2.75 and 7.7 g/l was obtained in a shake-flask and a 15 l bioreactor, respectively. Thus, co-culture of strain HSD07B and C. tropicalis is a promising way to produce a red pigment potentially useful for coloring applications.  相似文献   

8.
Aeromonas hydrophila 4AK4 normally produces copolyesters (PHBHHx) consisting of 3-hydroxybutyrate (C4) and 3-hydroxyhexanoate (C6). Wild type and recombinant A. hydrophila 4AK4 (pSXW02) expressing vgb and fadD genes encoding Vitreoscilla haemoglobin and Escherichia coli acyl-CoA synthase respectively, were found able to produce homopolyester poly(3-hydroxyvalerate) (PHV) (C5) on undecanoic acid as a single carbon source. The recombinant grew to 5.59 g/L cell dry weight (CDW) containing 47.74 wt% PHV in shake flasks when growth was conducted in LB medium and PHV production in undecanoic acid. The cells grew to 47.12 g/L CDW containing 60.08 wt% PHV in a 6 L fermentor study. Physical characterization of PHV produced by recombinant A. hydrophila 4AK4 (pSXW02) in fermentor showed a weight average molecular weight (Mw) of 230,000 Da, a polydispersity of 3.52, a melting temperature of 103 °C and a glass transition temperature of −15.8 °C. The degradation temperature at 5% weight loss of the PHV was around 258 °C.  相似文献   

9.
Polyphenol oxidases are involved in aurone biosynthesis but the gene responsible for 4-deoxyaurone formation in Asteraceae was so far unknown. Three novel full-length cDNA sequences were isolated from Coreopsis grandiflora with sizes of 1.80 kb (cgAUS1) and 1.85 kb (cgAUS2a, 2b), encoding for proteins of 68–69 kDa, respectively. cgAUS1 is preferably expressed in young petals indicating a specific role in pigment formation. The 58.9 kDa AUS1 holoproenzyme, was recombinantly expressed in E. coli and purified to homogeneity. The enzyme shows only diphenolase activity, catalyzing the conversion of chalcones to aurones and was characterized by SDS–PAGE and shot-gun type nanoUHPLC–ESI-MS/MS.  相似文献   

10.
11.
Ren W  Zhao L  Zhang L  Wang Y  Cui L  Tang Y  Sun X  Tang K 《Journal of plant physiology》2011,168(10):1076-1083
Vitamin E has been found to be associated with an important antioxidant property in mammals and plants. In photosynthetic organisms, the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD; E.C. 1.13.11.27) plays an important role in the vitamin E biosynthetic pathway. The full-length cDNA encoding HPPD was isolated from Lactuca sativa L. by rapid amplification of cDNA ends (RACE). The cDNA, designated as LsHPPD, was 1743 base pairs (bp) long containing an open reading frame (ORF) of 1338 bp encoding a protein of 446 amino acids. Sequence analysis indicated that LsHPPD shared high identity with HPPD from Medicago truncatula L. Real-time fluorescent quantitative PCR (qPCR) analysis revealed that LsHPPD was preferentially expressed in mature leaves compared with other tissues and that the LsHPPD expression was sensitive to high light and drought stress treatments. Transient expression of LsHPPD via agroinfiltration resulted in 12-fold increase in LsHPPD mRNA expression level and 4-fold enhancement in α-tocopherol content compared with the negative control. A decrease in chlorophyll content and inhibition of photosystem II were observed during stress treatments and agroinfiltration.  相似文献   

12.
The N-acyl-homoserine lactones (N-AHLs) play an important role in bacterial cell-cell signaling. Up to date, however, only a few different experimentally proven classes of N-AHL ring-cleaving enzymes are known. Here we report on the isolation and biochemical characterization of a novel hydrolase derived from the soil metagenome and acting on N-AHLs. The identified protein designated BpiB05 is weakly similar to hypothetical proteins from Bacteroides fragilis, the draft genomes of two Burkholderia species as well as a marine metagenomic ORF but is otherwise not similar to any known protein. BpiB05 was overexpressed in Escherichia coli as a 10× His-tagged fusion protein. The recombinant protein revealed a molecular weight of about 70 kDa and was tested for its quorum quenching (QQ) activities using a lacZ-bioassay. Additional HPLC-MS analyses confirmed the lactonolytic activity of the purified protein in the presence of Ca2+. Further tests suggested that BpiB05 strongly reduces motility in Pseudomonas aeruginosa, pyocyanin synthesis and biofilm formation in this microbe. Because BpiB05 is not distantly related to any of the currently known hydrolases it forms probably a novel group within the growing number of proteins acting on N-AHLs.  相似文献   

13.
Certain strains of Bacillus sphaericus produce a highly toxic mosquito-larvicidal binary toxin during sporulation. The binary toxin is composed of toxic BinA (41.9 kDa) and receptor binding BinB (51.4 kDa) polypeptides and is active against vectors of filariasis, encephalitis and malaria. The toxin has been tested with limited use for the control of vector mosquitoes for more than two decades. The binA gene from a local ISPC-8 strain of B. sphaericus that is highly toxic to Culex and Anopheles mosquito species was cloned into pET16b and expressed in Escherichia coli. The purified BinA protein differs by one amino acid (R197 M) from BinA of the highest toxicity strains 1593/2362/C3-41. Majority of the expressed protein was observed in inclusion bodies. BinA inclusions alone from E. coli did not show toxic activity, like reported previously. However, the active form of BinA could be purified to homogeneity from the soluble fraction of E. coli cell lysate, grown at reduced temperature after isopropyl β-d-thiogalactopyranoside induction. The purified BinA protein with and without poly-histidine tag showed LC50 dose of 82.3 and 66.9 ng ml−1, respectively, at 48 h against Culex quinquefasciatus larvae. The secondary structure of BinA is expected to be mainly β strands as estimated using far-UV circular dichroism. The estimates matched well with the secondary structure predictions using amino acid sequence. This is the first report of large-scale purification and accurate toxicity estimation of soluble B. sphaericus BinA. This can help in design and synthesis of improved bacterial insecticide.  相似文献   

14.
Yeast cell wall fractions have been proposed to bind enteropathogenic bacteria. The aim of this study was to develop a quantitative assay by measuring the optical density as growth parameter of adhering bacteria. The exponential growth phase of adhering bacteria was determined by optical density reading and compared with the colony count (CFU/mL). A linear regression was compiled and the bacterial number bound to the yeast cell wall product could be determined. Further focus was the investigation of a yeast cell wall from strain Trichosporon mycotoxinivorans (MTV) for its ability to bind gram negative Salmonella, E. coli and Campylobacter strains and gram positive probiotic bacteria of the genera lactobacilli and bifidobacteria as well as gram positive Clostridium perfringens quantitatively. The gram negative probiotic strain E. coli Nissle 1917 was also investigated. Seven out of 10 S. Typhimurium and S. Enteritidis strains adhered to the cell wall product with an amount between 103 and 104 CFU/10 μg. Four out of 7 E. coli strains showed an average binding capability (102 CFU/10 µg) whereas 4 × 103E. coli F4 cells bound per 10 μg yeast cell wall. E. coli 0149 K91, E. coli 0147 K89, C. jejuni and C. perfringens as well the genera lactobacilli and bifidobacteria did not bind to the yeast cell wall. E. coli Nissle 1917 was bound with 2 × 102 CFU/10 μg. These results demonstrate that cell wall from MTV can be used to differentially bind E. coli spp. and Salmonella spp. up to 8 × 104 CFU/10 μg. Thus certain yeast cell walls may prevent enteric infections caused by selective bacteria. This methodical approach would be an accurate tool in the feed industry for quality control of yeast cell wall products.  相似文献   

15.
The homogeneous low molecular weight chitosans (LMWC) of molecular weight 9.5–8.5 kDa, obtained by pronase catalyzed non-specific depolymerization (at pH 3.5, 37 °C) of chitosan showed lyses of Bacillus cereus and Escherichia coli more efficiently (100%) than native chitosan (< 50%). IR and 1H-NMR data showed decrease in the degree of acetylation (14–19%) in LMWC compared to native chitosan (∼ 26%). Minimum inhibitory concentration of LMWC towards 106 CFU ml− 1 of B. cereus was 0.01% (w/v) compared to 0.03% for 104 CFU ml− 1 of E. coli. SEM revealed pore formation as well as permeabilization of the bacterial cells, as also evidenced by increased carbohydrate and protein contents as well as the cytoplasmic enzymes in the cell-free supernatants. N-terminal sequence analyses of the released proteins revealed them to be cytoplasmic/membrane proteins. Upon GLC, the supernatant showed characteristic fatty acid profiles in E. coli, thus subscribing to detachment of lipopolysaccharides into the medium, whereas that of B. cereus indicated release of surface lipids. The mechanism for the observed bactericidal activity of LMWC towards both Gram-positive and Gram-negative bacteria has been discussed.  相似文献   

16.
We investigated whether diapause pupae of Byasa alcinous exhibit pupal color diphenism (or polyphenism) similar to the diapause pupal color polyphenism shown by Papilio xuthus. All diapause pupae of B. alcinous observed in the field during winter showed pupal coloration of a dark-brown type. When larvae were reared and allowed to reach pupation under short-day conditions at 18 °C under a 60 ± 5% relative humidity, diapause pupae exhibited pupal color types of brown (33%), light-brown (25%), yellowish-brown (21%), diapause light-yellow (14%) and diapause yellow (7%). When mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C and 25 °C under a 60 ± 5% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 91.2, 8.8 and 0.0% at 10 °C, and 12.2, 48.8 and 39.0% at 25 °C, respectively. On the other hand, when mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C, 18 °C and 25 °C under an over 90% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 79.8, 16.9 and 3.3% at 10 °C, 14.5, 26.9 and 58.6% at 18 °C, and 8.3, 21.2 and 70.5% at 25 °C, respectively. These results indicate that diapause pupae of brown types are induced by lower temperature and humidity conditions, whereas yellow types are induced by higher temperature and humidity conditions. The findings of this study show that diapause pupae of B. alcinous exhibit pupal color diphenism comprising brown and diapause yellow types, and suggest that temperature and humidity experienced after a gut purge are the main factors that affect the diapause pupal coloration of B. alcinous as environmental cues.  相似文献   

17.
We constructed a genetic fusion of a single domain antibody (sdAb) with the thermal stable maltose binding protein from the thermophile Pyrococcus furiosus (PfuMBP). Produced in the Escherichia coli cytoplasm with high yield, it proved to be a rugged and effective immunoreagent. The sdAb–A5 binds BclA, a Bacillus anthracis spore protein, with high affinity (KD ∼ 50 pM). MBPs, including the thermostable PfuMBP, have been demonstrated to be excellent folding chaperones, improving production of many recombinant proteins. A three-step purification of E. coli shake flask cultures of PfuMBP–sdAb gave a yield of approximately 100 mg/L highly purified product. The PfuMBP remained stable up to 120 °C, whereas the sdAb–A5 portion unfolded at approximately 68 to 70 °C but could refold to regain activity. This fusion construct was stable to heating at 1 mg/ml for 1 h at 70 °C, retaining nearly 100% of its binding activity; nearly one-quarter (24%) activity remained after 1 h at 90 °C. The PfuMBP–sdAb construct also provides a stable and effective method to coat gold nanoparticles. Most important, the construct was found to provide enhanced detection of B. anthracis Sterne strain (34F2) spores relative to the sdAb–A5 both as a capture reagent and as a detection reagent.  相似文献   

18.
The 503nm pigment of Escherichia coli   总被引:2,自引:0,他引:2       下载免费PDF全文
The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH.  相似文献   

19.
Wild type T4 bacteriophage and recombinant T4 bacteriophages displaying biotin binding peptide (BCCP) and cellulose binding module (CBM) on their heads were immobilized on nano-aluminum fiber-based filter (Disruptor™), streptavidin magnetic beads and microcrystalline cellulose, respectively. Infectivity of the immobilized phages was investigated by monitoring the phage-mediated growth inhibition of bioluminescent E. coli B and cell lysis using bioluminescent ATP assay. The results showed that phage immobilization resulted in a partial loss of infectivity as compared with the free phage. Nevertheless, the use of a biosorbent based on T4 bacteriophage immobilized on Disruptor™ filter coupled with a bioluminescent ATP assay allowed simultaneous concentration and detection of as low as 6 × 103 cfu/mL of E. coli in the sample within 2 h with high accuracy (CV = 1-5% in log scale). Excess of interfering microflora at levels 60-fold greater than the target organism did not affect the results when bacteriophage was immobilized on the filter prior to concentration of bacterial cells.  相似文献   

20.
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the nervous system of vertebrates, involved in neuroprotection. O2 equilibrium measurements on mouse Ngb yielded significantly different P50 values, ranging from ∼2 torr to ∼10 torr. By a kinetic approach minimizing the effects of protein autoxidation, we measured P50 = 2.2 torr at 20 °C. As predicted from the structure, O2 binds to the Y44D Ngb mutant more quickly (k = 2.2 s−1 vs 0.15 s−1) and with slightly higher affinity (P50 = 1.3 torr) than wild-type. In addition, we introduced a novel reduction protocol for metNgb based on NADH:flavorubredoxin oxidoreductase (FlRd-red) from Escherichia coli, a candidate for the Ngb reducing activity recently identified in E. coli extracts. Interestingly, E. coli FlRd-red shares sequence similarity with the FAD-binding domain of the human apoptosis-inducing factor, a finding which may have unexpected significance with reference to the mechanism of neuroprotection by Ngb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号