首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-d-ribose, a degradation product of thymidine generated by TP enzymatic activity, partially prevented hypoxia-induced apoptosis. 2-Deoxy-d-ribose inhibited hypoxia-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not c-jun NH(2)-terminal kinase/stress-activated protein kinase in human leukemia HL-60 cells. 2-Deoxy-d-ribose also suppressed the levels of Bax attached to mitochondria under hypoxic conditions. SB203580, a specific inhibitor of the p38 MAPK, suppressed the hypoxia-induced apoptosis of HL-60 cells. These findings suggest that one of the molecular bases for resistance to hypoxia-induced apoptosis conferred by 2-deoxy-d-ribose is the inhibition of the p38 signaling pathway. The expression levels of TP are elevated in many malignant solid tumors and thus the 2-deoxy-d-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.  相似文献   

2.
An angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity partially prevented hypoxia-induced apoptosis. 2-Deoxy-D-ribose inhibits a number of components of the caspase-mediated hypoxia-induced apoptotic pathway. It inhibits hypoxia-induced caspase 3 activation, mitochondrial cytochrome c release, downregulation of Bcl-2 and Bcl-x(L), upregulation of hypoxia-inducible factor (HIF)-1 alpha, and loss of mitochondrial transmembrane potential in human leukemia HL-60 cell line. These findings suggest a molecular mechanism by which 2-deoxy-d-ribose confers the resistance to apoptosis. Thus 2-deoxy-D-ribose-modulated suppression of HIF-1 alpha expression could prevent the hypoxia-induced decrease of the anti-apoptotic Bcl-2 and Bcl-x(L) on the mitochondria. 2-Deoxy-L-ribose and its analogs may enhance apoptosis and suppress the growth of tumors by competitively inhibiting the activities of 2-deoxy-d-ribose and thus these analogs show promise for anti-tumor therapy.  相似文献   

3.
Thymidine phosphorylase inhibits apoptosis induced by cisplatin   总被引:8,自引:0,他引:8  
An angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP, partially prevents hypoxia-induced apoptosis. TP is expressed at higher levels in tumor tissues compared to the adjacent non-neoplastic tissues in a variety of human carcinomas. High expression of TP is associated with an unfavorable prognosis. To investigate the effect of TP on cisplatin-induced apoptosis, human leukemia Jurkat cells were transfected with wild-type or mutant (L148R) TP cDNA. TP inhibited a number of steps in the cisplatin-induced apoptotic pathway, activation of caspases 3 and 9 and mitochondrial cytochrome c release. These findings suggest a mechanism by which TP confers resistance to apoptosis induced by cisplatin. Moreover, mutant TP that has no enzymatic activity also suppressed cisplatin-induced apoptosis. These findings indicate that TP has cytoprotective functions against cytotoxic agents which are independent of its enzymatic activity.  相似文献   

4.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

5.
6.
Hypoxia induces the expression of the pro-apoptotic gene BNIP3   总被引:14,自引:0,他引:14  
It has been shown that oxygen deprivation results in apoptotic cell death, and that hypoxia inducible factor 1 (HIF1) and the tumor suppressor p53 play key roles in this process. However, the molecular mechanism through which hypoxia and HIF1 induce apoptosis is not clear. Here we show that the expression of pro-apoptotic gene BNIP3 is dramatically induced by hypoxia in various cell types, including primary rat neonatal cardiomyocytes. Overexpression of HIF1alpha, but not p53, induces the expression of BNIP3. Overexpression of BNIP3 leads to a rather unusual type of apoptosis, as no cytochrome c leakage from mitochondria was detected and inhibitors of caspases were unable to prevent cell death. Taken together, these data suggest that HIF1-dependent induction of BNIP3 may play a significant role during hypoxia-induced cell death.  相似文献   

7.
8.
It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Mitochondrial dysfunction contributes to the pathophysiology of acute kidney injury (AKI). Mitophagy selectively degrades damaged mitochondria and thereby regulates cellular homeostasis. RNA-binding proteins (RBPs) regulate RNA processing at multiple levels and thereby control cellular function. In this study, we aimed to understand the role of human antigen R (HuR) in hypoxia-induced mitophagy process in the renal tubular cells. Mitophagy marker expressions (PARKIN, p-PARKIN, PINK1, BNIP3L, BNIP3, LC3) were determined by western blot analysis. Immunofluorescence studies were performed to analyze mitophagosome, mitolysosome, co-localization of p-PARKIN/TOMM20 and BNIP3L/TOMM20. HuR-mediated regulation of PARKIN/BNIP3L expressions was determined by RNA-immunoprecipitation analysis and RNA stability experiments. Hypoxia induced mitochondrial dysfunction by increased ROS, decline in membrane potential and activated mitophagy through up-regulated PARKIN, PINK1, BNIP3 and BNIP3L expressions. HuR knockdown studies revealed that HuR regulates hypoxia-induced mitophagosome and mitolysosome formation. HuR was significantly bound to PARKIN and BNIP3L mRNA under hypoxia and thereby up-regulated their expressions through mRNA stability. Altogether, our data highlight the importance of HuR in mitophagy regulation through up-regulating PARKIN/BNIP3L expressions in renal tubular cells.  相似文献   

11.
12.
BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) is a BH3-only protein that regulates apoptosis and autophagy. BNIP3 plays also an important role in hypoxia-induced cell response and is regulated by HIF1. Here, we studied a possible association of BNIP3 expression and the prognosis of patients with renal cell carcinomas (RCCs) and examined the functional relevance of BNIP3 in the regulation of cell survival and apoptosis of renal carcinoma cells. BNIP3 expression was determined by immunohistochemistry in RCC tumor tissue samples of 569 patients using a tissue microarray. Functional characterization of BNIP3 in renal carcinoma cells indicates prosurvival effects. In human RCC tumor samples, high cytoplasmic BNIP3 expression was associated with high-grade RCCs and regional lymph node metastasis. BNIP3 expression correlated negatively with disease-specific survival. Multivariate Cox regression analysis retained BNIP3 expression as an independent prognostic factor in patients without distant metastasis. Together, our studies imply that BNIP3 regulates cell survival in RCCs and its expression is an independent prognostic marker in patients with localized RCCs.  相似文献   

13.
Feng X  Liu X  Zhang W  Xiao W 《The EMBO journal》2011,30(16):3397-3415
Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stroke.  相似文献   

14.
15.
Thymidine phosphorylase (TP) has chemotactic and angiogenic activities resulting from its enzymatic activity in vitro, and it also promotes tumor growth and inhibits apoptosis in vivo. Recently, we have reported that TP plays an important role in Fas-induced apoptosis. Caspase-8 cleavage, subsequent cytochrome c release, and caspase-3 cleavage were prevented in KB cells transfected with a TP cDNA (KB/TP cells). In this study, treatment with thymidine phosphorylase inhibitor (TPI) or thymidine did not affect cell survival of KB/TP cells during Fas-induced apoptosis. Moreover, treatment with thymine or 2-deoxy-D-ribose (degradation products of thymidine generated by TP) also did not affect cell survival of control transfectant (KB/CV) cells during Fas-induced apoptosis. These findings indicate that TP suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity.  相似文献   

16.
BNIP3 is a unique pro-apoptotic protein which belongs to the BH3-only subset of the Bcl-2 family and localizes on mitochondrial membrane. Despite the inherent difficulty of identifying binding partners for membrane proteins, several binding partners for BNIP3 have been identified. In this study, a modified split-ubiquitin membrane yeast two-hybrid system was constructed and used to identify acetyl-Coenzyme A acyltransferase 2 (ACAA2) as a new BNIP3 binding partner. The interaction between BNIP3 and ACAA2 was confirmed by pull-down and co-immunoprecipitation assays. ACAA2 was also found to co-localize with BNIP3 in mitochondria. Furthermore, the apoptosis induced by over-expressed BNIP3 via transfection or hypoxia treatment was abolished by ACAA2 in human hepatocellular carcinoma HepG2 cells and osteosarcoma U-2 OS cells. These results strongly suggest that ACAA2 be a functional BNIP3 binding partner and provide a possible linkage between fatty acid metabolism and apoptosis of cells.  相似文献   

17.
E2F6在物理性低氧及化学性低氧诱导的凋亡中的表达特征   总被引:6,自引:0,他引:6  
Shu B  Yang WW  Yang HT 《生理学报》2008,60(1):1-10
心肌细胞凋亡性死亡是低氧发生时的重要病理学特征,但低氧诱导的心肌细胞凋亡的调控机制尚未完全阐明.E2F6是E2F转录因子家族成员之一,我们新近的研究证实其具有抑制DNA损伤诱导的细胞凋亡作用.但是,E2F6是否参与了低氧诱导的心肌细胞凋亡的调控尚不清楚.在本研究中,我们初步探讨了E2F6在物理性低氧及化学性低氧模拟物诱导大鼠心肌细胞系H9c2细胞凋亡中的表达特征.结果表明:物理性低氧、化学性低氧模拟物去铁胺(desferrioxamine,DFO)和氯化钻(cobalt chloride,CoCl2)均能有效诱导H9c2细胞发生凋亡.在物理性低氧及CoCl2,诱导的H9c2细胞凋亡中,内源性E2F6 mRNA表达明显下调,但蛋白表达没有明显变化.而在DFO诱导的凋亡中,内源性E2F6 mRNA及蛋白表达均发生明显下调.这些结果提示,E2F6可能参与调控DFO模拟低氧诱导的H9c2细胞凋亡,而对物理性低氧及CoCl2,模拟低氧诱导的细胞凋亡敏感性较低.此外,DFO模拟低氧诱导的细胞凋亡机制可能与物理性低氧及CoCl2.模拟低氧诱导的细胞凋亡机制不同.  相似文献   

18.
Tracy K  Macleod KF 《Autophagy》2007,3(6):616-619
Understanding the role of BNIP3 in the systemic response to hypoxia has been complicated by conflicting results that indicate on the one hand that BNIP3 promotes cell death, and other data, including our own that BNIP3 is not sufficient for cell death, but rather plays a critical role in hypoxia-induced autophagy. This work suggests that rather than promoting death, BNIP3 may actually allow survival either by preventing ATP depletion or by eliminating damaged mitochondria. However, the function of BNIP3 may be subverted under unusual conditions associated with acidosis that arise following extended periods of hypoxia and anaerobic glycolysis. Despite this novel insight into BNIP3 function, much remains to be done in terms of pinning down a molecular activity for BNIP3 that explains both its role in autophagy and how this may be subverted to induce cell death. As a target of the RB tumor suppressor, our work also places BNIP3 at the center of efforts to exploit autophagy to better treat human cancers in which tumor hypoxia is implicated as a progression factor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号