首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The development of Parkinson’s disease is accompanied by concurrent activation of caspase-3 and apoptosis of dopaminergic neurons of human patients and rodent models. The role of caspase-3, a final executioner of apoptosis, in the pathogenesis of Parkinson’s disease, however, remains to be determined. Here, we show that gene disruption of caspase-3 protects mice from 1-methyle-4-phenyl-1,2,3,6-tetrahmydropyridine (MPTP)-induced Parkinsonian syndrome, as reflected by reversal of MPTP-induced bradykinesia and decreased tyrosine hydroxylase expression in the nigra-striatum. MPTP treatment resulted in increased caspase-3 activation and apoptosis in the substantia nigra of wild-type mice at 24 h after the inception of MPTP treatment, as compared with vehicle-treated control animals. Gene disruption of caspase-3 prevented MPTP-induced apoptosis in the substantia nigra. At 7 days after MPTP treatment, tyrosine hydroxylase expression was suppressed and infiltration of activated microglia and astrocytes was markedly increased in the nigra-striatum of wild-type mice. All of these alterations following MPTP treatment were blocked by disruption of caspase-3 in mice. These results clearly indicate that caspase-3 activation is required for the development of MPTP-induced Parkinson’s disease in mice. These findings suggest that activation of caspase-3-mediated apoptosis of dopaminergic neurons in the early stage may play an important role in the pathogenesis of Parkinson’s disease.  相似文献   

2.
Background: Overlaps in clinical, pathological and molecular characteristics of Parkinson’s disease (PD) and Major Depressive Disorder (MD-D) have promoted association studies in search of common genetic risk factors that may predispose or modify this spectrum of disorders. Experimental and clinical data suggest that genetic variations in Brain-derived neurotrophic factor (BDNF) gene may increase the risk for PD and MD-D. Methods: Two hundred and sixty-six PD, 83 MD-D and 400 controls were recruited for this study, assessed using a battery of neuropsychological tests, and genotyped for 11757C/G, 712A/G, 196A/G, and 270C/T in BDNF gene. Results: 712A/G was associated with 2.50-fold time risk of PD. By combining genotypes AG/AA with 712 GG genotype as reference (OR = 1) in stratification analysis, AG/AA genotypes were associated with PD (OR = 2.94, 95% CI = 1.88–4.61). Accordingly, the A allele was significantly overrepresented in PD compared with the G allele (OR = 3.16, 95% CI = 2.08–4.81). This distribution in females and males were similar. Conclusion: Our results suggested a novel association between BDNF 712A/G AG/AA genotypes and PD in a Chinese Han population.  相似文献   

3.
BACKGROUND Parkinson’s disease(PD)is a neurological disorder characterized by the progressive loss of midbrain dopamine(DA)neurons.Bone marrow mesenchymal stem cells(BMSCs)can differentiate into multiple cell types including neurons and glia.Transplantation of BMSCs is regarded as a potential approach for promoting neural regeneration.Glial cell line-derived neurotrophic factor(GDNF)can induce BMSC differentiation into neuron-like cells.This work evaluated the efficacy of nigral grafts of human BMSCs(hMSCs)and/or adenoviral(Ad)GDNF gene transfer in 6-hydroxydopamine(6-OHDA)-lesioned hemiparkinsonian rats.AIM To evaluate the efficacy of nigral grafts of hMSCs and/or Ad-GDNF gene transfer in 6-OHDA-lesioned hemiparkinsonian rats.METHODS We used immortalized hMSCs,which retain their potential for neuronal differentiation.hMSCs,preinduced hMSCs,or Ad-GDNF effectively enhanced neuronal connections in cultured neurons.In vivo,preinduced hMSCs and/or Ad-GDNF were injected into the substantia nigra(SN)after induction of a unilateral 6-OHDA lesion in the nigrostriatal pathway.RESULTS Hemiparkinsonian rats that received preinduced hMSC graft and/or Ad-GDNF showed significant recovery of apomorphine-induced rotational behavior and the number of nigral DA neurons.However,DA levels in the striatum were not restored by these therapeutic treatments.Grafted hMSCs might reconstitute a niche to support tissue repair rather than contribute to the generation of new neurons in the injured SN.CONCLUSION The results suggest that preinduced hMSC grafts exert a regenerative effect and may have the potential to improve clinical outcome.  相似文献   

4.
Parkinson’s disease (PD) is a complex disease, with genetics and environment contributing to the disease onset. Recent studies of causative PD genes have confirmed the involvement of cellular mechanisms engaged in mitochondrial and UPS dysfunction, oxidative stress and apoptosis in the progressive degeneration of the dopaminergic neurons in PD. In addition, clinical, epidemiological and experimental evidence has implicated neuroinflammation in the disease progression. This review will discuss neuroinflammation in PD, with particular focus on the genetic and toxin-based models of the disease. These studies have confirmed elevated oxidative stress and the pro-inflammatory response occurs early in the disease and these processes contribute to and/or exacerbate the nigro-striatal degeneration. In addition, the experimental models discussed here have also provided strong evidence that these pathways are an important link between the familial and sporadic causes of PD. The potential application of anti-inflammatory interventions in limiting the dopaminergic neuronal cell death in these models is discussed with evidence suggesting that the further investigation of their use as part of multi-targeted clinical trials is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号