首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Galectin-3 has been reported to induce apoptosis of Jurkat cells through binding receptors such as CD45. CD45RABC is heavily O-glycosylated and N-glycosylated, while CD45RO is only N-glycosylated. In this study, no apoptosis induced by galectin-3 was detected in CD45RO-transfected cells, whereas apoptosis of CD45RABC-transfected cells was observed, implying that O-glycans on CD45 might play roles in galectin-3-induced apoptosis. O-Glycosylation inhibition assay further suggests the role of O-glycans on CD45 in regulation of galectin-3-induced apoptosis. We also found that deglycosylation at N327 of CD45RO resulted in increased binding to galectin-3 without affecting apoptosis, while deglycosylation at N36 or N109 of CD45RO enhanced galectin-3-induced apoptosis. These data demonstrate that galectin-3-induced apoptosis of Jurkat cells is regulated by both O-glycans and N-glycans on CD45.  相似文献   

3.
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.  相似文献   

4.
Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment.  相似文献   

5.
Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell–matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell–matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation.  相似文献   

6.
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. Although the exact mechanisms driving hypoxia-induced invasion and metastasis remain elusive, we hypothesized that epithelial-mesenchymal transition (EMT) may play a major role. We investigated this in vitro by treating hepatocellular carcinoma cells under 1.0% O2. After the hypoxia treatment, the cells exhibited some morphological changes including cell elongation, cytoskeletal rearrangement, and junctional disruption. Moreover, expression of the epithelia-specific marker E-cadherin was decreased and expression of the myofibroblast-specific marker vimentin was detected in the treated cells. Cell migration and ECM gel invasion were increased. These findings were consistent with events observed during EMT. Hypoxia-induced EMT is accompanied by increased phosphorylation, activation of Akt and the downstream signaling. Hypoxia-induced EMT was blocked by PI3K inhibitor LY294002. The results suggest that the PI3K/Akt-dependent signaling pathways serve to regulate hypoxia-induced EMT of hepatocellular carcinoma cells.  相似文献   

7.
Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization.  相似文献   

8.
9.
Marc-André Caron 《FEBS letters》2009,583(9):1528-1534
Since hypoxia might contribute to the development of muscle atrophy, we wished to provide direct evidence linking hypoxia to muscle atrophy. By evaluating protein degradation and synthesis in hypoxic myotubes we found a significant reduction in total protein content. Using functional assays we observed protein degradation elevation in the first 24 h while synthesis was maintained during this period and then significantly decrease at 48 h. These results demonstrate a temporal regulation of protein homeostasis, whereby elevated protein degradation is followed by a reduction in synthesis. These results are comparable to the cellular adaptation seen during development of muscle atrophy.  相似文献   

10.
Zhang J  Wong J  Gao G  Luo H 《FEBS letters》2011,(1):261-265
The ubiquitin–proteasome system is known to be utilized by coxsackievirus to facilitate its propagation within the host cells. The present study explores the role of tripeptidyl peptidase II (TPPII), a serine peptidase contributing to protein turnover by acting downstream of the proteasome, in regulating coxsackievirus infection. Inhibition of TPPII does not affect virus replication in cells with functional proteasome. However, when the proteasome is impaired, TPPII appears to serve as an alternative to maintain low levels of virus infection. Our results suggest an important function of TPPII in the maintenance of viral growth and may have implications for anti-viral therapy.  相似文献   

11.
Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25 °C for 0, 0.25, 0.5, 1, 2, 6, and 24 h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H+-ATPase (EC3.6.3.14). The activity and translation of the PM H+-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H+-ATPase activity was the most dramatic in camelina roots after recovery for 2 h at 25 °C, followed by decay to background levels within 24 h. In rapeseed, the change in H+-ATPase activity during the recovery period was less pronounced. Furthermore, H+-pumping increased in both species after 15 min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H+-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H+-fluxes that may be regulated by specific translational and post-translational modifications.  相似文献   

12.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

13.
14.
The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure–function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.  相似文献   

15.
Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.  相似文献   

16.
Cathepsin V (L2), a lysosomal cysteine protease, is a member of cathepsin family, relating to cancer invasion and metastasis. Cathepsin V contains two predicted N-glycosylation sites, but it has not been reported whether cathepsin V is glycosylated or not. In this study, we clarified the role of N-glycosylation of cathepsin V for its functions. We demonstrated that cathepsin V is N-glycosylated at both Asn221 and Asn292 using mass spectrometry and site-directed mutagenesis. N-glycosylation of cathepsin V was important for transportation to lysosome, secretion, and activity in HT1080 cells. These data demonstrated that functions of cathepsin V are controlled by N-glycosylation.  相似文献   

17.
Mammalian cells express two closely related MEK isoforms, MEK1 and MEK2, upstream of the ERK1/ERK2 MAPK module. Although genetic studies have suggested that MEK1 and MEK2 do not have overlapping functions in vivo, little is known about their specific contribution to the activation of ERKs and to tumor cell proliferation. We used Tet-inducible shRNA to investigate the independent role of MEK1 and MEK2 for the oncogenic and the serum-induced activation of ERK1 and ERK2 in LS174T colon carcinoma cells. We show that MEK1 is the main activator of both ERK1 and ERK2. MEK2 removal has no impact by itself but it can cooperate with MEK1 ablation for the inhibition of ERK1/2 activity. In addition, we show that MEK1 is the critical isoform regulating tumor cell proliferation in vitro and in vivo.  相似文献   

18.
Platycodin D (PD), an active triterpenoid saponin from Platycodon grandiflorum, has been known to inhibit the proliferation of a variety of cancer cells, but the effect of PD on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PD inhibits the migratory and invasive abilities of the highly metastatic MDA-MB-231 breast cancer cell line. We demonstrated that a non-cytotoxic concentration of PD markedly suppressed wound healing migration, invasion through the matrigel, and adhesion to an ECM-coated substrate in a dose-dependent manner. Moreover, PD inhibited cell invasion by reducing matrix metalloproteinase (MMP)-9 enzyme activity and mRNA expression. Western blot analysis indicated that PD potently suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) as well as blocked the phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway. Furthermore, PD treatment inhibited the DNA binding activity of NF-κB, which is known to mediate the expression of epidermal growth factor receptor (EGFR), as observed by electrophoretic mobility shift assay. Specific mechanisms of action exerted by PD involved the downregulation of EGFR and the inhibition of EGF-induced activation of the EGFR, MAPK, and PI3K/Akt pathways. The in vivo studies showed that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in BALB/c nude mice. These results suggest that PD might be a potential therapeutic candidate for the treatment of breast cancer metastasis.  相似文献   

19.
20.
PON1 is a high density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. In vivo animal and human studies have indicated that estradiol (E2) supplementation enhances serum PON1 activity. In this study, we sought to determine if E2 directly up-regulates cell-associated PON1 activity in vitro and to characterize the mechanism of regulation. In vitro E2 treatment of both the human hepatoma cell line Huh7 and normal rat hepatocytes resulted in a 2- to 3-fold increase in cell-associated PON1 catalytic activity. E2 potently induced PON1 activity with average EC50 values of 15 nM for normal hepatocytes and 68 nM for Huh7. The enhancement of PON1 activity by E2 was blocked by the estrogen receptor (ER) antagonist ICI 182,780 indicating that E2 was acting through the ER. The up-regulation of PON1 activity by E2 did not involve enhancement of PON1 mRNA or protein levels and did not promote secretion of PON1. Thus, E2 can enhance cell-associated PON1 activity in vitro without altering PON1 gene expression or protein level. Our data suggest that E2 may regulate the specific activity and/or stability of cell surface PON1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号