首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Linolenic acid (18:3) and its derivative jasmonic acid (JA) are important molecules in disease resistance in many dicotyledonous plants. We have previously used 18:3- and JA-deficient rice (F78Ri) to investigate the roles of fatty acids and their derivatives in resistance to the blast fungus Magnaporthe grisea [A. Yara, T. Yaeno, J.-L. Montillet, M. Hasegawa, S. Seo, K. Kusumi, K. Iba, Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid, Biochem. Biophys. Res. Commun. 370 (2008) 344-347; A. Yara, T. Yaeno, M. Hasegawa, H. Seto, J.-L. Montillet, K. Kusumi, S. Seo, K. Iba, Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases, Plant Cell Physiol. 48 (2007) 1263-1274]. However, because F78Ri plants are suppressed in the first step of the JA biosynthetic pathway, we could not confirm the specific contribution of JA to disease resistance. In this paper, we generated two JA-deficient rice lines (AOCRi and OPRRi) with suppressed expression of the genes encoding allene oxide cyclase (AOC) and 12-oxo-phytodienoic acid reductase (OPR), which catalyze late steps in the JA biosynthetic pathway. The levels of disease resistance in the AOCRi and OPRRi lines were equal to that in wild-type plants. Our data suggest that resistance to M. grisea is not dependent on JA synthesis.  相似文献   

2.
Linolenic acid (18:3) is the most abundant fatty acid in plant membrane lipids and is a source for various oxidized metabolites, called oxylipins. 18:3 and oxylipins play important roles in the induction of defense responses to pathogen infection and wound stress in Arabidopsis. However, in rice, endogenous roles for 18:3 and oxylipins in disease resistance have not been confirmed. We generated 18:3-deficient transgenic rice plants (F78Ri) with co-suppression of two omega-3 fatty acid desaturases, OsFAD7 and OsFAD8. that synthesize 18:3. The F78Ri plants showed enhanced resistance to the phytopathogenic fungus Magnaporthe grisea. A typical 18:3-derived oxylipin, jasmonic acid (JA), acts as a signaling molecule in defense responses to fungal infection in Arabidopsis. However, in F78Ri plants, the expression of JA-responsive pathogenesis-related genes, PBZ1 and PR1b, was induced after inoculation with M. grisea, although the JA-mediated wound response was suppressed. Furthermore, the application of JA methyl ester had no significant effect on the enhanced resistance in F78Ri plants. Taken together, our results indicate that, although suppression of fatty acid desaturases involves the concerted action of varied oxylipins via diverse metabolic pathways, 18:3 or 18:3-derived oxylipins, except for JA, may contribute to signaling on defense responses of rice to M. grisea infection.  相似文献   

3.
The inheritance of host plant resistance and its effect on the relative infection efficiency for leaf blast was studied in the crosses IR36/CO39 (partially resistant × highly susceptible) and IR36/IR64 (both partially resistant). On the natural scale, gene action appeared multiplicative. After log transformation, additive effects described most of the genetic variation in the cross IR36/CO39, while additive and dominance effects were about equal in magnitude in the cross IR36/IR64. Dominance was towards increased resistance. No transgressive segregation occurred in the cross IR36/CO39. The number of genes that reduce lesion number was estimated to be zero in CO39 and five or more in IR36. The cross IR36/IR64 showed transgressive segregation in both directions, and IR36 and IR64 each contain at least one gene that is not present in the other cultivar. The heritabilities (narrow sense) in the F2 were low (range 0.06–0.16), while narrow sense heritabilities based on F3 lines were much higher (range 0.41–0.68). Lesion numbers in F3 lines were reasonably correlated with those in F5 progenies derived from the same F2 plant (r was±0.6 in both crosses). Partial resistance can be effectively improved by selecting the most resistant plants from the most resistant F3 lines.  相似文献   

4.
Magnaporthe grisea is a fungal pathogen that infects rice leaves and causes rice blast, a devastating crop disease. M. grisea produces active elicitors of the hypersensitive response in rice that were previously identified as ceramide monohexosides (CMHs). Using several chromatographic approaches, mass spectrometry, and nuclear magnetic resonance, we identified ceramide mono- and dihexosides (CDH) in purified lipid extracts from M. grisea cells. As described by other authors, CMH consists of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecenoic or 2-hydroxyhexadecenoic acids and a carbohydrate segment consisting of one residue of glucose. CDHs, however, contain beta-galactose (1-->4)-linked to beta-glucose as sugar units and phytosphingosine as the long-chain base, bound to a C24 alpha-hydroxylated fatty acid. To our knowledge, this is the first report on the occurrence of CDH in a fungal species and illustrates the existence of an alternative path of ceramide glycosylation in fungal cells.  相似文献   

5.
To identify fungal stress-related genes in wild rice, Oryza minuta, we constructed a subtracted library using suppression subtractive hybridization in combination with mirror orientation selection. DNA chips containing 960 randomly selected cDNA clones were applied by reverse Northern analysis to eliminate false positive clones from the library and to prescreen differentially expressed genes. In total, 377 cDNA clones were selected on the basis of their signal intensities and expression ratios. Sequence analyses of these 377 cDNA fragments revealed that 180 of them (47.7%) represented unique genes. Of these180 cDNAs, 89 clones (49.6%) showed significant homologies to previously known genes, while the remaining 91 did not match any known sequences. The putative functions of the 180 unique ESTs were categorized by aligning them with MIPS data. They were classified into seven different groups using microarray data-derived expression patterns and verified by Northern blotting.Abbreviations ER: Endoplasmic reticulum - EST: Expressed sequence tag - MIPS: Munich Information Center for Protein Sequences - MOS: Mirror orientation selection - NCBI: National Center for Biotechnology Information - omfi: Oryza minuta fungal-stress induced - PCD: Programmed cell death - PDI: Proteins disulfide isomerase - SSH: Suppression subtractive hybridization Communicated by I.S. ChungK.S. Shim and S.K. Cho contributed equally to this work.  相似文献   

6.
Summary Using a one-step strategy to disrupt CUT1, a gene for cutinase, cut1 mutants were generated in two strains of Magnaporthe grisea. One strain, pathogenic on weeping lovegrass and barley and containing the arg3–12 mutation, was transformed with a disruption vector in which the Aspergillus nidulans ArgB+ gene was inserted into CUT1. Prototrophic transformants were screened by Southern hybridization, and 3 of 53 tested contained a disrupted CUT1 gene (cut1 : : ArgB+). A second strain, pathogenic on rice, was transformed with a disruption vector in which a gene for hyg B resistance was inserted into CUT1. Two of the 57 transformants screened by Southern hybridization contained a disrupted CUT1 gene (cut1:. Hyg). CUT1 mRNA was not detectable in transformants that contained a disrupted gene. Transformants with a disrupted CUT1 gene failed to produce a cutin-inducible esterase that is normally detected by activity staining on non-denaturing polyacrylamide gels. Enzyme activity, measured either with tritiated cutin or with p-nitrophenyl butyrate as a substrate, was reduced but not eliminated in strains with a disrupted CUT1 gene. The infection efficiency of the cut1 disruption transformants was equal to that of the parent strains on all three host plants. Lesions produced by these mutants had an appearance and a sporulation rate similar to those produced by the parent strains. We conclude that the M. grisea CUT1 gene is not required for pathogenicity.  相似文献   

7.
Isolates of Magnaporthe grisea causing gray leaf spot on rice were collected in Argentina and analyzed for mating distribution and fertility. One hundred and twenty-five isolates of M. grisea were collected from rice plants between 2000 and 2003. Each isolate was tested for mating type through a polymerase chain reaction based assay. All M. grisea isolates from Argentina belonged to a single mating type, MAT1.1. The fertility status of isolates was determined using controlled crosses in vitro, pairing each isolate with GUY11 and KA9 (MAT1.2 standard hermaphroditic testers). Production of perithecia was scarce among isolates of the blast pathogen since a low percentage of them (7.2%) developed perithecia with only one of the fertile tester (KA9); all crosses failed with the other tester strain. Asci and ascospores were not observed. The presence of only one mating type and the absence of female fertile isolates indicate that sexual reproduction is rare or absent in M. grisea populations associated with rice in Argentina.  相似文献   

8.
9.
Magnaporthe grisea causes rice blast, the most important fungal disease of rice. The segregation of genes controlling virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in this host-parasite interaction. Full-sib progeny and parent isolates Guy11 and 2539 of M. grisea were inoculated onto rice (Oryza sativa) cultivar CO39 and five near-isogenic lines (NILs) of CO39. Each NIL contained a different single gene affecting resistance to specific isolates of M. grisea. No differential interactions between NILs and progeny or parents were observed; parents and progeny pathogenic on CO39 were pathogenic on all five NILs. Segregation ratios of 101 full-sib progeny, 117 progeny from full-sib parents, and 109 backcross progeny, indicated a common single gene affecting pathogenicity on CO39 and the five NILs. A subset of the above 327 isolates (43 fullsib progeny, 37 progeny from full-sib parents, and 32 backcross progeny) were inoculated onto rice cultivar 51583; all were pathogenic, indicating that cultivar specificity to CO39 was segregating in this population of isolates. The locus controlling cultivar specificity, named avrCO39, was mapped to chromosome 1 using a subset of the progeny previously used to construct an RFLP map of M. grisea. The closest reported RFLP markers were 11.8 (estimated 260 kb) and 17.2 cM (estimated 380 kb) away and provide starting points on either side of the locus for a chromosome walk to clone the locus.  相似文献   

10.
Probenazole (PBZ) is the active ingredient of Oryzemate, an agrochemical which is used for the protection of rice plants from Magnaporthe grisea (blast fungus). While PBZ was reported to function upstream of salicylic acid (SA) in Arabidopsis, little is known about the mechanism of PBZ-induced resistance in rice. The role of SA in blast fungus resistance is also unclear. The recommended application period for Oryzemate is just before the Japanese rainy season, at which time rice plants in the field have reached the 8-leaf stage with adult traits. Thus, the involvement of SA in PBZ-induced resistance was studied in compatible and incompatible blast fungus-rice interactions at two developmentally different leaf morphology stages. Pre-treatment of inoculated fourth leaves of young wild-type rice plants at the 4-leaf stage with PBZ did not influence the development of whitish expanding lesions (ELs) in the susceptible interaction without the accumulation of SA and pathogenesis-related (PR) proteins. However, PBZ pre-treatment increased accumulation of SA and PR proteins in the eighth leaves of adult plants at the 8-leaf stage, resulting in the formation of hypersensitive reaction (HR) lesions (HRLs). Exogenous SA induced resistance in adult but not young plants. SA concentrations in blast fungus-inoculated young leaves were essentially the same in compatible and incompatible interactions, suggesting that PBZ-induced resistance in rice is age-dependently regulated via SA accumulation.  相似文献   

11.
Although microsatellite or simple sequence repeat (SSR) markers have several advantages, few have been developed in fungi. The goal of this study was to identify and characterize SSR-containing loci in the filamentous ascomycete Magnaporthe grisea, the causal agent of rice blast disease, and to add these markers to an integrated genetic map of this species [Theor. Appl. Genet. 95 (1997) 20]. We have constructed and screened a microsatellite-enriched small-insert genomic library as well as exploited both publicly available and one proprietary databases for identification of M. grisea SSR containing sequences. Twenty-four out of 49 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our test population of six isolates. The number of alleles at each locus ranged from two to six when assayed on 3% agarose gels. Twenty-three of the primer pairs amplified polymorphic products between Guy11 and 2539, the parents of a cross from which a genetic map for M. grisea has been established. Genetic analysis showed that all the markers segregated in the expected 1:1 ratio and map positions were determined for all 23 loci.  相似文献   

12.
13.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

14.
Cecropins are a family of antimicrobial peptides, which constitute an important key component of the immune response in insects. Here, we demonstrate that transgenic rice (Oryza sativa L.) plants expressing the cecropin A gene from the giant silk moth Hyalophora cecropia show enhanced resistance to Magnaporthe grisea, the causal agent of the rice blast disease. Two plant codon-optimized synthetic cecropin A genes, which were designed either to retain the cecropin A peptide in the endoplasmic reticulum, the ER-CecA gene, or to secrete cecropin A to the extracellular space, the Ap-CecA gene, were prepared. Both cecropin A genes were efficiently expressed in transgenic rice. The inhibitory activity of protein extracts prepared from leaves of cecropin A-expressing plants on the in vitro growth of M. grisea indicated that the cecropin A protein produced by the transgenic rice plants was biologically active. Whereas no effect on plant phenotype was observed in ER-CecA plants, most of the rice lines expressing the Ap-CecA gene were non-fertile. Cecropin A rice plants exhibited resistance to rice blast at various levels. Transgene expression of cecropin A genes was not accompanied by an induction of pathogenesis-related (PR) gene expression supporting that the transgene product itself is directly active against the pathogen. Taken together, the results presented in this study suggest that the cecropin A gene, when designed for retention of cecropin A into the endoplasmic reticulum, could be a useful candidate for protection of rice plants against the rice blast fungus M. grisea.  相似文献   

15.
Rice blast, caused by the fungal pathogen Pyricularia grisea, is a serious disease affecting rice-growing regions around the world. Current methods for identification of blast-resistant germplasm and progeny typically utilize phenotypic screening. However, phenotypic screens are influenced by environmental conditions and the presence of one resistance gene can sometimes phenotypically mask other genes conferring resistance to the same blast race. Pi-z is a dominant gene located on the short arm of chromosome 6 that confers complete resistance to five races of blast. Using sequence data found in public databases and degenerate primer pairs based on the P-loop, nucleotide binding sites and kinase domain motifs of previously cloned resistance genes, we have developed PCR-based DNA markers that cosegregate with the gene. These markers are polymorphic in a wide range of germplasm, including the narrow crosses characteristic of applied rice-breeding programs. They can now be used as a low cost, high-throughput alternative to conventional phenotypic screening for direct detection of blast resistance genes, allowing rapid introgression of genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more-durable blast resistance.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D. Mackill  相似文献   

16.
A zero erucic acid (C22:1) line of Brassica juncea (VH486), adapted to the agronomic conditions of Northern India, has been modified for its fatty acid composition in the seed oil with antisense constructs using the sequence of fad2 gene of B. rapa. The full-length B. rapa fad2 cDNA sequence was determined by 5 and 3 RACE of a partial sequence available in the EST database. Construct pASfad2.1 contained 315 to 1251 bp and construct pASfad2.2 contained 1 to 1251 bp fragment of the fad2 gene, both in antisense orientation, driven by a truncated napin promoter. Analysis of the levels of linoleic acid (C18:2) in the BC1 seeds of single-copy transgenics showed that the construct pASfad2.2 gave better suppression of the fad2 gene as compared to the construct pASfad2.1. The BC1 transgenic seeds containing the pASfad2.2 construct segregated into two distinct classes of C18:2>20% (putative null homozygotes) and C18:2<20% (putative heterozygotes) in a 1:1 ratio, while the T1 seeds segregated into three classes, C18:2>20%, C18:2 between 12% and 20%) and C18:2<12% (putative homozygotes) in a 1:2:1 ratio. Putative homozygous T1 seeds (C18:2<12% analyzed by the half-seed method) of four of the transgenic lines were grown to establish T2 homozygous lines. These had ca. 73% C18:1 and 8 to 9% each of C18:2 and C18:3 (-linolenic acid) fractions in comparison to ca. 53% C18:1, 24% C18:2 and 16% C18:3 in the parental line VH486.  相似文献   

17.
Elicitors are molecules that stimulate defense responses in plants. Previously, an elicitor-encoding gene, named pemG1, was isolated from Magnaporthe grisea. To assess the function of pemG1 in rice (Oryza sativa L. cv. Nipponbare), the gene was cloned under a constitutive maize ubiquitin promoter and introduced into Nipponbare cultivar. The resultant plants showed stable integration and constitutive expression of the pemG1 gene. The expression of defense-related gene for phenylalanine ammonia-lyase was triggered and proline content was also increased in pemG1-expressing plants. The pemG1-expressing plants showed enhanced resistance against rice blast after inoculation with M. grisea spores, suggesting that the pemG1 expression enhances disease resistance in transgenic rice. DQ and JM contributed equally to this paper.  相似文献   

18.
The CNA-IRAT 5 upland rice population has been improved for 4 years by recurrent selection for blast resistance in Brazil. In order to predict the efficiency of recurrent selection in different test systems and to compare the relative advantage of hybrids versus pure line breeding, a combined genetic analysis of partial blast resistance in the CNA-IRAT 5 population was undertaken. A three-level hierarchical design in inbreeding and a factorial design were derived from the base population. Partial blast resistance of lines and hybrids was evaluated in the greenhouse and in the field by inoculation with one virulent blast isolate. The means and genetic variances of the hybrids and lines were estimated. Genetic advance by recurrent selection was predicted from estimates of variance components. The inheritance of partial blast resistance was mainly additive but non-additive effects were detected at both levels of means and variances. Mean heterosis ranged from 4%–8% for lesion size and lesion density to 10–12% for leaf and panicle resistance. High dominance or homozygous dominance variances relative to additive variance and negative covariance between additive and homozygous dominance effects were estimated. A low frequency of favourable alleles for partial resistance would explain the observed organisation of genetic variability in the base population. Recurrent selection will efficiently improve partial blast resistance of the CNA-IRAT 5 population. Genetic advance for line or hybrid values was expected to be higher testing doubled haploid lines than S1 lines, or than general combining ability. Two components of partial resistance assessed in the greenhouse, lesion size and lesion density, could be used as indirect selection criteria to improve field resistance. On the whole, hybrid breeding for partial blast resistance appeared to be slightly more advantageous than pure line breeding.  相似文献   

19.
Effects of compounds that influenced cytosolic pH on the level of putrescine in detached rice leaves were examined. Permeant weak acids, isobutyric acid and propionic acid, increased the level of putrescine in detached rice leaves. Procaine and trisodium citrate, known to be permeant weak bases, on the other hand, decreased the level of putrescine. It seems possible that the level of putrescine in detached rice leaves is regulated by the cytosolic pH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号