首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of retinoic acid (RA) on nitric oxide (NO) production are controversial. Furthermore, it has never been studied whether these effects are mediated by direct modulation of phosphorylation of endothelial nitric oxide synthase (eNOS). Using bovine aortic endothelial cells, we found that all-trans RA (atRA) dose- and time-dependently decreased NO production without alteration in eNOS expression. This decrease was accompanied by reduction in eNOS-Ser(1179) phosphorylation. However, atRA did not alter the phosphorylation of eNOS-Ser(116) or eNOS-Thr(497). Concurrently, atRA also decreased the expressions of vascular endothelial growth factor (VEGF) and its receptor KDR/Flk-1, and Akt phosphorylation. Co-treatment with troglitazone, an activator of VEGF expression, reversed the atRA-induced reductions in eNOS-Ser(1179) phosphorylation and NO production, with concomitant restoration in VEGF expression. Direct treatment with VEGF also reversed these inhibitory effects, suggesting an important role for VEGF. Nonetheless, the RARalpha antagonist Ro 41-5253 did not block all the inhibitory effects of atRA, indicating that these inhibitory effects are not mediated by the RA response element (RARE). Thus, atRA decreases eNOS-Ser(1179) phosphorylation through a mechanism that depends on VEGF-KDR/Flk-1-mediated Akt phosphorylation but is independent of RARE, leading to reduction in NO production.  相似文献   

4.
The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.  相似文献   

5.

Background

Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS) and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM).

Methods

Electrical field stimulation (EFS, 2–20 V)-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen) for 7 days supplemented with L-citrulline or saline (in vitro or in vivo). The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS) inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL) succinate (1 mM) and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM).

Results

Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p < 0.001; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group). Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p < 0.001), which were restored to control level by L-citrulline. L-citrulline supplementation in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p <0.001; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline). Inhibition of ASS or ASL prevented this effect of L-citrulline.

Conclusion

The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups. L-citrulline recycling does not play a major role under basal conditions in airways, but it has an important role under conditions of substrate limitations to NOS as a source of L-arginine, and L-citrulline supplementation reverses the impaired relaxation of airways under hyperoxic conditions.  相似文献   

6.
7.
8.
9.
A series of 1,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase. A variety of flexible and restricted basic amine side chain substitutions was explored at the 1-position of the indole ring, while keeping the amidine group fixed at the 5-position. Compounds having N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- (12, (R)-12, (S)-12 and 13) and N-(1-(1-methylazepan-4-yl)- side chains (14, 15, (-)-15 and (+)-15) showed increased inhibitory activity for the human nNOS isoform and selectivity over eNOS and iNOS isoforms. The most potent compound of the series for human nNOS (IC(50)=0.02 μM) (S)-12 showed very good selectivity over the eNOS (eNOS/nNOS=96-fold) and iNOS (iNOS/nNOS=850-fold) isoforms.  相似文献   

10.
A series of 1,6-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). By varying the basic amine side chain at the 1-position of the indole ring, several potent and selective inhibitors of human neuronal NOS were identified. In general compounds with bulkier side chains displayed increased selectivity for nNOS over eNOS and iNOS isoforms. One of the compounds, (R)-8 was shown to reduce tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in an in vivo rat model of dural inflammation relevant to migraine pain.  相似文献   

11.
Ye H  Bi HR  Lü CL  Tang XB  Zhu DL 《生理学报》2005,57(5):612-618
15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)在低氧性肺血管收缩中起着重要作用,低氧肺动脉高压下调内皮型。氧化氮合酶(endothelial nitric oxide synthase,eNOS),使一氧化氮(nitric oxide,NO)的产量下降,但目前尚无关于15-HETE与eNOS/NO相互作用研究的报道。我们通过Wistar大鼠肺动脉环张力、牛肺动脉内皮细胞NO产量、总eNOS表达及eNOS磷酸化测定等方法对15-HETE与eNOS/NO的相互作用进行研究。首先分离人鼠肺动脉,分为eNOS抑制剂L-NAME组(0.1mmol/L)、去缸管内皮组与内皮完整组,用15-HETE作用夫鼠离体肺动脉环,测定肺动脉张力。结果表明,L-NAME组、去除内皮组与内皮完整组分别比较,15-HETE对血管的收缩作用增强,且都有统计学意义(P〈0.05)。培养牛肺动脉内皮细胞,分别用15-HETE、15-脂氧酶(15-lipoxygenase,15-LO)抑制剂[(cinnamyl 3,4-dihydroxy-[alpha]-cyanocinnamate,CDC)和(nordihydroguiairetic acid,YDGA)]处理细胞,通过Greiss方法检测亚硝酸盐含量,间接测定NO产量,与对照组比较,1μmol/L 15-HETE明显降低肺动脉内皮细胞NO水平(P〈0.05),10μmol/L CDC和0.1mmol/L NDGA显著增加NO水平(分别是P〈0.05,P〈0.01);通过Western blot检测不同时间(5,10,15,20,30,60min)eNOS的表达情况,结果显示,15-HETE的不同作用时间,没有引起eNOS表达的明显不同;用苏氨酸495位点磷酸化eNOS(Thr495)抗体进行免疫沉淀,再用总eNOS抗体和15-LO抗体通过Western blot检测磷酸化型含量,问接测定eNOS活性,结果表明15-HETE增强Thr495磷酸化型eNOS含量。由于Thr495为eNOS抑制性磷酸化位点,因此15-HETE降低eNOS活性。这些数据表明:15-HETE的缩血管作用有eNOS/NO参与,15-HETE可以通过磷酸化Thr495位点降低eNOS活性,并且首次发现磷酸化eNOS(Thr495)和15-LO之间存在蛋白质相互作用。  相似文献   

12.
Preservation with University of Wisconsin (UW) solution has been implicated in coronary artery endothelial damage and loss of endothelium-dependent vasodilatation. Therefore, the objective of this study was to investigate the effect of this solution on basal nitric oxide (NO) release from porcine coronary endothelial cells (CEC). Cultures were exposed to cold (4 degrees C) storage in UW solution for 6, 8 and 12 h. Parallel cultures were incubated with control medium at 37 degrees C. After treatment, NO release was evaluated by nitrite production, a stable metabolite of NO. Activity of the constitutive endothelial nitric oxide synthase (eNOS) was measured by the conversion [3H]-l-arginine to [3H]-l-citrulline and eNOS protein expression by Western blotting. Nitrite production by control cells was augmented with increasing times of incubation, whereas no change was observed in those cultures preserved with UW solution. Activity of eNOS was significantly decreased compared to the respective control group by cold storage of cells for longer periods than 6 h. Such decrease was correlated with a diminished eNOS protein expression in CEC preserved with UW solution after 8- and 12-h storage. These results suggest that prolonged hypothermic storage of CEC with UW solution does not preserve basal NO release because of a certain loss of eNOS protein, which may contribute to the reported injury of heart transplants after long-term preservation.  相似文献   

13.
Liu J  Wei S  Tian L  Yan L  Guo Q  Ma X 《Peptides》2011,32(1):86-92
The endomorphin-1 (EM1) and endomorphin-2 (EM2) are endogenous opioid peptides, which modulate extensive bioactivities such as pain, cardiovascular responses, immunological responses and so on. The present study was undertaken to investigate the effects of EM1/EM2 on the primary cultured human umbilical vein endothelial cells (HUVECs) damaged by high glucose. PI AnnexinV-FITC detection was performed to evaluate the apoptosis rate. Levels of nitric oxide (NO) and nitric oxide synthase (NOS) activity were measured by the Griess reaction and the conversion of 3H-arginine to 3H-citrulline, respectively. Endothelin-1 (ET-1) was evaluated by the enzyme-linked immunosorbent assay (ELISA). Cell proliferation was determined by the MTT viability assay. mRNA expression of endothelial nitric oxide synthase (eNOS) and ET-1 were measured by real-time PCR. Our data showed that EM1/EM2 inhibited cell apoptosis. The high glucose induced increase in expression of NO, NOS and ET-1 were significantly attenuated by pretreatment with EM1/EM2 in a dose dependent manner. In addition, EM1/EM2 suppressed the mRNA eNOS and mRNA ET-1 expression in HUVECs under high glucose conditions. Naloxone, the nonselective opioid receptor antagonist, did not influence the mRNA eNOS expression when it was administrated on its own; but it could significantly antagonize the effects induced by EM1/EM2. Furthermore, in all assay systems, EM1 was more potent than EM2. The results suggest that EM1/EM2 have a beneficial effect in protecting against the endothelial dysfunction by high glucose in vitro, and these effects were mediated by the opioid receptors in HUVECs.  相似文献   

14.
目的:研究非等渗压浓度对血管内皮细胞NO合成酶活性的影响,并探索其发生机制。方法:使血管内皮细胞暴露于低渗(205mOsm)或高渗透压(410mOsm)培养液,用Griess法测定NO合成酶(NOS)活性,以Northern blot ting观测细胞iNOS和eNOS基因表达的变化。结果: 非等渗压浓度可使血管内皮细胞中NOS活性显著升高。细胞NOS活性变化具有明显的时间效应规律,低渗透压浓度效应产生的效应早于高渗透压浓度,且低渗透压浓度的影响较高渗透压浓度更为明显。Dexamethasone对这种非等渗透压诱导的NOS活性没有明显作用,给予cycloheximide,不影响非等渗压诱导的这种差异。Nothern blot分析表明:非等渗压浓度不诱导iNOS基因表达,而使eNOSmRNA表达增加。结论:非等渗透压浓度诱导血管内皮细胞NOS活性升高,eNOS基因表达增强是其主要机制之一。  相似文献   

15.
The goal of the present study is to investigate the role of tetrahydrobiopterin (BH4) in the vascular response in ovariectomized rats. Rats were randomly assigned to two groups: (1) sham group: sham-operated female rats, and (2) Ovx group: rats were ovariectomized. Our results have shown that the plasma 17 beta-estradiol levels in the Ovx group at the end of the experiment were significantly lower than in the sham group. Vasoreactivity assessed with intact aortic rings indicated that the phenylephrine-induced vasocontractile response to aortic rings from the Ovx group was greater than that of the sham group. In contrast, the vasodilator responses to acetylcholine and L-arginine (L-Arg) in the sham group were significantly greater than in the Ovx group. Differences in vasoreactivity in denuded aorta between the two groups were not noted. Moreover, exogenous BH4 significantly restored L-Arg-induced vasodilator responses in the Ovx group. However, this improvement effect was not found in the sham group. In addition, there were significant increases in superoxide anion production in aortic tissue and significant decreases in plasma nitric oxide levels in the Ovx group. Furthermore, BH4 contents in the aorta in the Ovx group were significantly decreased compared with the sham group. In conclusion, the present study demonstrates that the impairment of vascular reactivity was found in the ovariectomized rats. The possible mechanism of this defect may have resulted from the deficiency of available BH4. Thus, this study may provide a novel therapeutic strategy for the treatment of postmenopausal cardiovascular disorders.  相似文献   

16.
For myocardial regeneration therapy, the low differentiation capability of functional cardiomyocytes sufficient to replace the damaged myocardial tissue is one of the major difficulties. Using Nkx2.5-GFP knock-in ES cells, we show a new efficient method to obtain cardiomyocytes from embryonic stem (ES) cells. The proportion of GFP-positive cells was significantly increased when ES cells were cultured with a conditioned medium from aortic endothelial cells (ECs), accompanied by upregulation of cardiac-specific genes as well as other mesodermal genes. The promotion was more prominent when EC-conditioned medium was added at an early stage of ES cell differentiation culture (Day 0-3). Inhibitors of bone morphogenic protein (BMP), cyclooxygenase (COX), and nitric oxide synthetase (NO) prevented the promotion of cardiomyogenesis by EC-conditioned medium. These results suggest that supplementation of EC-conditioned medium enables cardiomyocytes to be obtained efficiently through promotion of mesoderm induction, which is regulated by BMP, COX, and NOS.  相似文献   

17.
The mechanisms leading to the age-related loss of endothelial nitric oxide (NO) and NO-dependent vasodilation remain largely unknown. Freshly isolated endothelium from young (6 months) and old (36 months) F344xBrN rats were analyzed for endothelial nitric oxide synthase (eNOS) protein, its subcellular distribution, and association with regulatory proteins. Results show that both vessel ring vasoreactivity and A23187-induced eNOS activity in isolated endothelial cells significantly (p < or = 0.05) declined with age. Levels of cGMP, a reliable marker for NO bioactivity also declined significantly (p < or = 0.01). However, no change in overall eNOS protein was evident. Subcellular fractionation studies revealed an age-related loss in active, plasma membrane-bound eNOS relative to eNOS in the Golgi/cytosol of the endothelium. Plasma membrane-associated eNOS in aged endothelium was also less complexed with the activating proteins Hsp90 and Akt and more associated with to caveolin-1, which inhibits eNOS activity. These results suggest that age-dependent loss of NO may be partly caused by differences in eNOS subcellular distribution and its association with inhibitory proteins.  相似文献   

18.
19.
Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of nitric oxide critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibitors. Stable transformants were generated by overexpressing rat neuronal NOS in HEK 293T cells. The enzyme was activated by introducing calcium ions into cells, and its activity was assayed by determining the amount of nitrite that was formed in culture medium using the Griess reagent. We tested a few NOS inhibitors with this assay and found that the method is sensitive, versatile, and easy to use. The cell-based assay provides more information than in vitro assays regarding the bioavailability of NOS inhibitors, and it is suitable for high-throughput screening.  相似文献   

20.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号