首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Protein post-translational modifications (PTMs) are central to the host innate immune regulations. Dynamically, PTMs fine-tune the spatial and temporary responses of immune- and non-immune-cells, in accordance with extracellular and intracellular stresses. Ubiquitin and ubiquitin-like proteins (Ubls) are emerging as the important multi-functional signals, controlling the activation, stability, affinity and location of many signaling proteins. Recent investigations, at the molecular-cellular-animal models, have shed new light on the versatility of the ubiquitin, SUMO and ISG15, for shaping the strength and duration of the innate immune responses. This review summarizes our current knowledge on the functions and regulatory mechanisms of the ubiquitin and Ubls in the innate immunity, the first line of host defense against microbial infection.  相似文献   

4.
5.
Modification by ubiquitin-like proteins is now known to be important for the functions of many proteins involved in DNA replication and repair. We have investigated the modification of human DNA polymerase delta by ubiquitin and SUMO proteins. We find that while the p125 and p50 subunits were not modified, the p12 subunit is ubiquitinated and the p66 subunit can be modified by ubiquitin and SUMO3. We show that levels of p12 are regulated by the proteasome, either directly or indirectly, through a mechanism that is not dependent upon p12 ubiquitination. We have mapped two sites of SUMO3-specific modification on the p66 subunit. SUMOylation by SUMO3 but not SUMO2 is unusual: their level of homology is so high that they are normally classified as variants of the same protein. However, our findings show that these two proteins can be distinguished in vivo and may have specific functions.  相似文献   

6.
7.
8.
9.
10.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

11.
12.
PLZF(promyelocytic leukaemia zinc finger protein)是一种重要的转录抑制因子,它由位于N端的BTB结构域和C端的锌指结构域构成。鉴于目前对于锌指结构域的立体结构还不是十分清楚,对其进行了高效表达和提纯。为了表达PLZF蛋白的锌指结构域,在其编码序列的5'端加上起始密码ATG后插入到表达载体PET-11a的多克隆位点。构建好的表达质粒转化到BL21 (DE3)大肠杆菌内并用IPTG诱导表达,发现重组蛋白主要以不溶性的包涵体形式在胞内表达。用含有SDS变性剂的缓冲液溶解包涵体后,采用凝胶过滤方法将重组蛋白纯化到纯度达96%以上。对纯化后的蛋白质用反透析的方法进行复性,然后用DNA结合实验进行活性分析,发现复性后的蛋白质具有特异的DNA结合活性,这为进一步研究PLZF蛋白锌指结构域的立体结构打下了重要基础。  相似文献   

13.
14.
15.
16.
17.
SUMO-1 modification increases human SOD1 stability and aggregation   总被引:4,自引:0,他引:4  
The mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) cause approximately 20% cases of familial amyotrophic lateral sclerosis (FALS), characterized by selective loss of motor neurons. Mutant SOD1 forms inclusions in tissues from FALS patients. However, the precise mechanism of the accumulation of mutant SOD1 remains unclear. Here we show that human SOD1 is a substrate modified by SUMO-1. A conversion of lysine 75 to an arginine within a SUMO consensus sequence in SOD1 completely abolishes SOD1 sumoylation. We further show that SUMO-1 modification, on both wild-type and mutant SOD1, increases SOD1 steady state level and aggregation. Moreover, SUMO-1 co-localizes onto the aggregates formed by SOD1. These findings imply that SUMO-1 modification on lysine 75 may participate in regulating SOD1 stability and its aggregation process. Thus, our results suggest that sumoylation of SOD1 may be involved in the pathogenesis of FALS associated with mutant SOD1.  相似文献   

18.
19.
Ubiquitin (Ub) modifications at sites of DNA double-strand breaks (DSBs) play critical roles in the assembly of signaling and repair proteins. The Ub-interacting motif (UIM) domain of Rap80, which is a component of the BRCA1-A complex, interacts with Ub Lys-63 linkage conjugates and mediates the recruitment of BRCA1 to DSBs. Small ubiquitin-like modifier (SUMO) conjugation also occurs at DSBs and promotes Ub-dependent recruitment of BRCA1, but its molecular basis is not clear. In this study, we identified that Rap80 possesses a SUMO-interacting motif (SIM), capable of binding specifically to SUMO2/3 conjugates, and forms a tandem SIM-UIM-UIM motif at its N terminus. The SIM-UIM-UIM motif binds to both Ub Lys-63 linkage and SUMO2 conjugates. Both the SIM and UIM domains are required for efficient recruitment of Rap80 to DSBs immediately after damage and confer cellular resistance to ionizing radiation. These findings propose a model in which SUMO and Ub modification is coordinated to recruit Rap80 and BRCA1 to DNA damage sites.  相似文献   

20.
Nucleotide excision repair (NER) is the major DNA repair process that removes diverse DNA lesions including UV-induced photoproducts. There are more than 20 proteins involved in NER. Among them, XPC is thought to be one of the first proteins to recognize DNA damage during global genomic repair (GGR), a sub-pathway of NER. In order to study the mechanism through which XPC participates in GGR, we investigated the possible modifications of XPC protein upon UV irradiation in mammalian cells. Western blot analysis of cell lysates from UV-irradiated normal human fibroblast, prepared by direct boiling in an SDS lysis buffer, showed several anti-XPC antibody-reactive bands with molecular weight higher than the original XPC protein. The reciprocal immunoprecipitation and siRNA transfection analysis demonstrated that XPC protein is modified by SUMO-1 and ubiquitin. By using several NER-deficient cell lines, we found that DDB2 and XPA are required for UV-induced XPC modifications. Interestingly, both the inactivation of ubiquitylation and the treatment of proteasome inhibitors quantitatively inhibited the UV-induced XPC modifications. Furthermore, XPC protein is degraded significantly following UV irradiation in XP-A cells in which sumoylation of XPC does not occur. Taken together, we conclude that XPC protein is modified by SUMO-1 and ubiquitin following UV irradiation and these modifications require the functions of DDB2 and XPA, as well as the ubiquitin–proteasome system. Our results also suggest that at least one function of UV-induced XPC sumoylation is related to the stabilization of XPC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号