首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of the Na+/H+ exchange system have been studied with 22Na+ uptake techniques at two stages of muscle development: proliferating myoblasts and differentiated myotubes. The characteristics of the interactions of the exchanger with external H+, with external Na+, and with amiloride or its more potent analogs are the same at both stages of development. Differences between the two stages of development concern: (i) the internal pH (pHi) dependence of the Na+/H+ exchanger, and (ii) the activation of the Na+/H+ exchanger by serum and phorbol ester which is observed in myoblasts but not in myotubes. Properties of the Na+/H+ exchanger in myoblasts after serum activation seem to be identical to those observed in myotubes with or without serum as if myotube formation stabilized a fully activated state of the exchanger. The activation of the myoblast Na+/H+ exchange system by serum is due to a shift of the pHi dependence towards alkaline pHi values and to an increase in the maximal activity of the Na+/H+ exchange system at acidic pH. Phorbol esters which are well-known activators of protein kinase C can only partially mimic the effects of serum on the Na+/H+ exchanger: they produce a shift of the pH dependence, but they do not increase the maximal activity at acidic pH.  相似文献   

2.
alpha-Thrombin, phorbol esters (PMA) and 1,2-diacylglycerol (DAG), three activators of the amiloride-sensitive Na+/H+ exchange in human platelets, rapidly increase the intracellular pH and the level of phosphorylation of the Na+/H+ exchange protein (NHE1). This stimulatory effect is suppressed by staurosporine, a potent kinase inhibitor, and increased by okadaic acid, a potent inhibitor of phosphatase 1 and 2A. The modulations of NHE1 phosphorylation by these factors correlate well with their effects on platelet pH. Thus, we conclude that in platelets (i) Na+/H+ exchange is mediated by NHE1, and (ii) platelet activating agents stimulate NHE1 via the modulation of the kinase/phosphatase equilibrium.  相似文献   

3.
Differentiated clonal cell lines were isolated from pluripotent P19 embryonal carcinoma (EC) cells treated as aggregates with retinoic acid. Two were characterized in detail. The lines differ in morphology, proliferation rate, the production of plasminogen activator, and in their mitogenic response to insulin but both produce extracellular matrix proteins and can be serially passaged over extended periods, in contrast to differentiated derivatives of many other EC lines. Further, both lines have receptors for and respond mitogenically to epidermal growth factor (EGF). Endogenous phosphorylation of several proteins, including the EGF receptor (150 kDa) and a 38-kDa protein, is induced by EGF in membranes isolated from these cells. Preincubation of membranes with EGF renders them able to catalyze phosphorylation of tyrosine residues in exogenously added peptide substrates. High voltage electrophoresis confirmed the tyrosine specificity of the phosphorylation on the 150- and 38-kDa bands. By contrast, similar experiments in undifferentiated cells showed that intact P19 EC neither bind nor respond to EGF mitogenically and EGF induces no changes in phosphorylation in isolated membranes.  相似文献   

4.
The effect of extracellular Na+ removal and replacement with other cations on receptor-mediated arachidonate release in platelets was studied to investigate the role of Na+/H+ exchange in this process. Replacement with choline+, K+, N-methylglucamine+ (which abolished the thrombin-induced pHi rise) or Li+ (which allowed a normal thrombin-induced pHi rise) significantly decreased arachidonate release in response to all concentrations (threshold to supra-maximal) of thrombin and collagen. This inhibition was not reversed by NH4Cl (10 mM) addition, which raised the pHi in the absence of Na+, but, on the contrary, NH4Cl addition further decreased the extent of thrombin- and collagen-induced arachidonate release, as well as decreasing 'weak'-agonist (ADP, adrenaline)-induced release and granule secretion in platelet-rich plasma. No detectable pHi rises were seen with collagen (1-20 micrograms/ml) and ADP (10 microM) in bis-(carboxyethyl)carboxyfluorescein-loaded platelets. Inhibition of thrombin-induced pHi rises was seen with 0.5-5 microM-5-NN-ethylisopropylamiloride (EIPA), but at these concentrations EIPA had little effect on thrombin-induced arachidonate release. At higher concentrations such as those used in previous studies (20-50 microM), EIPA inhibited aggregation/release induced by collagen and ADP in Na+ buffer as well as in choline+ buffer (where there was no detectable exchanger activity), suggesting that these concentrations of EIPA exert 'non-specific' effects at the membrane level. The results suggest that (i) Na+/H+ exchange and pHi elevations are not only necessary, but are probably inhibitory, to receptor-mediated arachidonate release in platelets, (ii) inhibition of receptor-mediated release in the absence of Na+ is most likely due to the absent Na+ ion itself, and (iii) caution should be exercised in the use of compounds such as EIPA, which, apart from inhibiting the Na+/H+ exchanger, have other undesirable and misleading effects in platelets.  相似文献   

5.
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703)) by p90 ribosomal S6 kinase (RSK). Because the NHE1 sequence at Ser(P)(703) (RIGSDP) is similar to a consensus sequence (RSXSXP) specific for 14-3-3 ligands, we evaluated whether serum stimulated 14-3-3 binding to NHE1. Five different GST-NHE1 fusion proteins spanning amino acids 515-815 were phosphorylated by RSK and used as ligands in a far Western analysis; only those containing Ser(P)(703) exhibited high affinity 14-3-3 binding. In PS127A cells (NHE1-overexpressing Chinese hamster fibroblasts) stimulated with 20% serum, NHE1 co-precipitation with GST-14-3-3 fusion protein increased at 5 min (5.2 +/- 0.4-fold versus control; p < 0.01) and persisted at 40 min (3.9 +/- 0.3-fold; p < 0.01). We confirmed that binding occurs at the RIGSDP motif using PS120 (NHE1 null) cells transfected with S703A-NHE1 or P705A-NHE1 (based on data indicating that 14-3-3 binding requires phosphoserine and +2 proline). Serum failed to stimulate association of 14-3-3 with these mutants. A GST-NHE1 fusion protein was phosphorylated by RSK and used as a ligand to assess the effect of 14-3-3 on protein phosphatase 1-mediated dephosphorylation of Ser(P)(703). GST-14-3-3 limited dephosphorylation (66% of initial state at 60 min) compared with GST alone (27% of initial state; p < 0.01). The protective effect of GST-14-3-3 was lost in the GST-NHE1 P705A mutant. Finally, the base-line rate of pH recovery in acid-loaded cells was equal in unstimulated cells expressing wild-type or P705A-NHE1. However, activation of NHE1 by serum was dramatically inhibited in cells expressing P705A-NHE1 compared with wild-type (0.13 +/- 0.02 versus 0.48 +/- 0.06 mmol of H(+)/min/liter, p < 0.01). These data suggest that 14-3-3 binding to NHE1 participates in serum-stimulated exchanger activation, a new function for 14-3-3.  相似文献   

6.
The Na+/H+ exchanger isoform-1 (NHE-1) is the key member of a family of exchangers that regulates intracellular pH and cell volume. Activation of NHE-1 by growth factors is rapid, correlates with increased NHE-1 phosphorylation and cell alkalinization, and plays a role in cell cycle progression. By two-dimensional tryptic peptide mapping of immunoprecipitated NHE-1, we identify serine 703 as the major serum-stimulated amino acid. Mutation of serine 703 to alanine had no effect on acid-stimulated Na+/H+ exchange but completely prevented the growth factor-mediated increase in NHE-1 affinity for H+. In addition, we show that p90 ribosomal S6 kinase (p90(RSK)) is a key NHE-1 kinase since p90(RSK) phosphorylates NHE-1 serine 703 stoichiometrically in vitro, and transfection with kinase-inactive p90(RSK) inhibits serum-induced phosphorylation of NHE-1 serine 703 in transfected 293 cells. These findings establish p90(RSK) as a serum-stimulated NHE-1 kinase and a mediator of increased Na+/H+ exchange in vivo.  相似文献   

7.
Na+/H+ exchange activity has been examined in endothelial cells isolated from porcine brain capillaries. Intracellular pH (pHi) changes were monitored using a confocal laser scanning microscope and the pH-sensitive fluorescence indicator 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Acid load of the brain capillary endothelial cells was performed with a NH4Cl (20 mM) prepulse. In bicarbonate-free solutions pHi recovered within 3 to 10 min. Removal of extracellular Na+ ions demonstrated that H+ extrusion after an acid load of the cells was Na+ dependent. The Na+/H+ exchange could be completely blocked by EIPA (5-(N-ethyl-N-isopropyl)amiloride) as well as by the novel inhibitor 3-methylsulfonyl-4-piperidinobenzoyl guanidine hydrochloride (HOE 694) in concentrations of 1 to 10 microM, respectively. EIPA and HOE 694 in a concentration of 0.1 microM caused a partial block of Na+/H+ exchange.  相似文献   

8.
The role of protein kinase C in activation of the plasma membrane Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. The basic lipid, sphingosine, was used to block enzymatic activity of protein kinase C. Na+/H+ exchange was activated by phorbol 12-myristate 13-acetate (PMA), diacylglycerols, platelet-derived growth factor (PDGF), thrombin, or by osmotically-induced cell shrinkage. Intracellular pH and Na+/H+ exchange activity were measured using the intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6) carboxyfluorescein. Acting alone, both crude sphingosine and pure, synthetic C18 D-(+)-erythro-sphingosine raised pHi in a dose-dependent manner (from 6.95 +/- 0.02 to 7.19 +/- 0.09 over 10 min for 10 microM sphingosine). This alkalinization was not due to Na+/H+ exchange as it was not altered by t-butylamiloride (50 microM) nor by replacement of the assay medium with a Na(+)-free solution. Sphingosine-induced alkalinization did not require protein kinase C activity, since it was fully intact in protein kinase C-depleted cells. It was also not due to a detergent action of sphingosine on the cell membrane, since both ionic and non-ionic detergents caused cell acidification. Rather, alkalinization induced by sphingosine appeared to be due to cellular uptake of NH3 groups since N-acetylsphingosine showed no alkalinization. After the initial cell alkalinization, cellular uptake of [3H]sphingosine continued slowly for up to 24 h. The ability of PMA or dioctanoylglycerol to activate Na+/H+ exchange fell to 20% of control after 24 h of sphingosine exposure. At all times, C11 and N-acetylsphingosine failed to block PMA-induced activation of the exchanger. Activation of the Na+/H+ exchanger by sucrose, which does not depend on protein kinase C activity, was unaffected by sphingosine. Activation of Na+/H+ exchange by thrombin and PDGF was partially inhibited by 30 and 20%, respectively. These data indicate that both thrombin and PDGF activate Na+/H+ exchange by pathway(s) that are primarily independent of protein kinase C.  相似文献   

9.
Fibroblast growth factors (FGFs) have been implicated in a number of proliferative lesions, including malignant tumor growth and vascularization. As a result, cytotoxic agents that target cell surface FGF receptors are currently under investigation. Previous reports have shown that conjugation of basic FGF with the ribosome inactivator, saporin, results in a potent cytotoxin specific for cells bearing high-affinity FGF receptors. In this report, we have used this FGF receptor-dependent cytotoxin to study receptor interactions at the surface of embryonal carcinoma cells, which express low numbers of high-affinity FGF receptors. The growth of three embryonal carcinoma cell lines and one embryonic stem cell line was shown to be inhibited by bFGF-saporin, suggesting that these cells are able to bind and internalize FGF through high-affinity FGF receptors. In addition, we determined that the responses of these cells to bFGF-saporin are qualitatively different than the responses of CHO-KI cells, which also exhibit low numbers of high-affinity FGF receptors. Specifically, pretreatment with bFGF-saporin reduces the cloning efficiency of CHO-KI cells 8- to 10-fold, whereas bFGF-saporin has little or no effect on the cloning efficiency of embryonal carcinoma cells. This finding suggests that bFGF-saporin is cytotoxic for CHO-KI cells, but not for embryonal carcinoma cells. Thus, our findings argue strongly that other factors, in addition to high-affinity FGF receptor number, are important in determining sensitivity of cells of bFGF-saporin.  相似文献   

10.
This study characterized the activation of the regulatory activity of the Na+/H+ antiporter during fertilization of hamster embryos. Hamster oocytes appeared to lack any mechanism for the regulation of intracellular pH in the acid range. Similarly, no Na+/H+ antiporter activity could be detected in embryos that were collected from the reproductive tract between 1 and 5 h post-egg activation (PEA). Activity of the Na+/H+ antiporter was first detected in embryos collected at 5.5 h PEA and gradually increased to reach maximal activity in embryos collected at 7 h PEA. Parthenogenetically activated one-cell and two-cell embryos demonstrate Na+/H+ antiporter activity, indicating that antiporter activity is maternally derived and initiated by activation of the egg. The inability of cycloheximide, colchicine, or cytochalasin D to affect initiation of antiporter activity indicates that antiporter appearance is not dependent on the synthesis of new protein or recruitment of existing protein to the cell membrane. In contrast, incubation of one-cell embryos with sphingosine did inhibit the appearance of Na+/H+ antiporter activity, showing that inhibition of normal protein kinase C activity is detrimental to antiporter function. Furthermore, incubation of oocytes with a phorbol ester which stimulates protein kinase C activity induced Na+/H+ antiporter activity in oocytes in which the activity was previously absent. Incubation with an intracellular calcium chelator also reduced the appearance of antiporter activity. Taken together, these data indicate that the appearance of Na+/H+ antiporter activity following egg activation may be due, at least in part, to regulation by protein kinase C and intracellular calcium levels.  相似文献   

11.
《FEBS letters》2014,588(9):1571-1579
Membrane androgen receptors (mAR) are expressed in several tumors. mAR activation by testosterone albumin conjugates (TAC) suppresses tumor growth and migration. mAR signaling involves phosphoinositide-3-kinase (PI3K) and Rho-associated protein kinase (ROCK). PI3K stimulates serum- and glucocorticoid-inducible kinase SGK1, which in turn activates Na+/H+-exchangers (NHE). In prostate cancer cells cytosolic pH (pHi) was determined utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-fluorescence and NHE-activity utilizing Na+-dependent cytosolic realkalinization following an ammonium pulse. TAC (100 nM) significantly increased pHi and NHE-activity, effects abrogated by NHE1-inhibitor cariporide (10 μM), SGK1-inhibitors EMD638683 (50 μM) and GSK650349 (10 μM) and ROCK-inhibitors Y-27632 (10 μM) and fasudil (100 μM). TAC treatment rapidly and significantly increased cell volume and actin polymerization, effects abolished in the presence of cariporide. Thus, mAR-activation activates cariporide-sensitive Na+/H+-exchangers, an effect requiring SGK1 and ROCK activity.  相似文献   

12.
The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs were cultured from bone marrow of heterozygous WNK-resistant OSR1 knockin mice (osr(KI)) and wild-type mice (osr(WT)). Cell volume was estimated from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein fluorescence, and Na(+)/H(+) exchanger activity from Na(+)-dependent realkalinization following ammonium pulse and migration utilizing transwell chambers. DCs expressed WNK1, WNK3, NCC, NKCC1, and OSR1. Phosphorylated NKCC1 was reduced in osr(KI) DCs. Cell volume and pH(i) were similar in osr(KI) and osr(WT) DCs, but Na(+)/H(+) exchanger activity and ROS production were higher in osr(KI) than in osr(WT) DCs. Before LPS treatment, migration was similar in osr(KI) and osr(WT) DCs. LPS (1 μg/ml), however, increased migration of osr(WT) DCs but not of osr(KI) DCs. Na(+)/H(+) exchanger 1 inhibitor cariporide (10 μM) decreased cell volume, intracellular reactive oxygen species (ROS) formation, Na(+)/H(+) exchanger activity, and pH(i) to a greater extent in osr(KI) than in osr(WT) DCs. LPS increased cell volume, Na(+)/H(+) exchanger activity, and ROS formation in osr(WT) DCs but not in osr(KI) DCs and blunted the difference between osr(KI) and osr(WT) DCs. Na(+)/H(+) exchanger activity in osr(WT) DCs was increased by the NKCC1 inhibitor furosemide (100 nM) to values similar to those in osr(KI) DCs. Oxidative stress (10 μM tert-butyl-hydroperoxide) increased Na(+)/H(+) exchanger activity in osr(WT) DCs but not in osr(KI) DCs and reversed the difference between genotypes. Cariporide virtually abrogated Na(+)/H(+) exchanger activity in both genotypes and blunted LPS-induced cell swelling and ROS formation in osr(WT) mice. In conclusion, partial OSR1 deficiency influences Na(+)/H(+) exchanger activity, ROS formation, and migration of dendritic cells.  相似文献   

13.
Nhx1, the endosomal Na(+)/H(+) exchanger of Saccharomyces cerevisiae represents the founding member of a newly emerging subfamily of intracellular Na(+)/H(+) exchangers. These proteins share significantly greater sequence homology to one another than to members of the mammalian Na(+)/H(+) exchanger (NHE) family encoding plasma membrane Na(+)/H(+) exchangers. Members of both subtypes are predicted to share a common organization, with an N-terminal transporter domain of transmembrane helices followed by a C-terminal hydrophilic tail. In the present study, we show that Nhx1 is an asparagine-linked glycoprotein and that the sites of glycosylation map to two residues within the C-terminal stretch of the polypeptide. This is the first evidence, to date, for glycosylation of the C-terminal region of any known NHE isoform. Importantly, the mapping of N-linked glycosylation to the C-terminal domain of Nhx1 is indicative of an unexpected membrane topology, particularly with regard to the orientation of the tail region. Although one recent study demonstrated that certain epitopes in the C-terminal domain of NHE3 were accessible from the exoplasmic side of the plasma membrane (Biemesderfer, D., DeGray, B., and Aronson, P. S. (1998) J. Biol. Chem. 273, 12391-12396), numerous other studies implicate a cytosolic disposition for the hydrophilic C-terminal tail of plasma membrane NHE isoforms. Our analysis of the glycosylation of Nhx1 is strongly indicative of residence of at least some portion of the hydrophilic tail domain within the endosomal lumen. These findings imply that the organization of the tail domain may be more complex than previously assumed.  相似文献   

14.
It has been shown that the addition of a beta-adrenergic catecholamine to a trout red blood cell suspension induces a 60-100-fold increase of sodium permeability resulting from the activation of a cAMP-dependent Na+/H+ antiport. Subsequent addition of propranolol almost instantaneously reduces the intracellular cAMP concentration, and thus the Na permeability, to their basal values (Mahé et al., 1985). If glutaraldehyde (0.06-0.1%) is added when the Na+/H+ exchanger is activated after hormonal stimulation, addition of propranolol no longer inhibits Na permeability: once activated and fixed by glutaraldehyde, the cAMP dependence disappears. Glutaraldehyde alone causes a rapid decrease in the cellular cAMP concentration. In its fixed state the antiporter is fully amiloride sensitive. The switching on of the Na+/H+ exchange by cAMP is rapidly (2 min) followed by acute but progressive desensitization of the exchanger (Garcia-Romeu et al., 1988). The desensitization depends on the concentration of external sodium, being maximal at a normal Na concentration (145 mM) and nonexistent at a low Na concentration (20 mM). If glutaraldehyde is added after activation in nondesensitizing conditions (20 mM Na), transfer to a Na-rich medium induces only a very slight desensitization: thus the fixative can "freeze" the exchanger in the nondesensitizing conformation. NO3- inhibits the activity of the cAMP-dependent Na+/H+ antiporter of the trout red blood cell (Borgese et al., 1986). If glutaraldehyde is added when the cells are activated by cAMP in a chloride-containing medium, the activity of the exchanger is no longer inhibited when Cl- is replaced by NO3-. Conversely, after fixation in NO3- medium replacement of NO3- by Cl- has very little stimulatory effect. This indicates that the anion dependence is not a specific requirement for the exchange process but that the anion environment is critical for the switching on of the Na+/H+ exchanger and for the maintenance of its activated configuration.  相似文献   

15.
A previous report from this laboratory (Rothenberg et al., 1983a) demonstrated the presence of an Na+/H+ exchanger in human epidermoid carcinoma A431 cells. We now characterize surface-derived membrane vesicles from this cell line which contain a functional Na+/H+ exchanger. The Na+/H+ exchanger in A431 vesicles shares a number of characteristics in common with previously described Na+/H+ exchangers including the following: (1) Na+ uptake is stimulated by an outward-directed pH gradient and inhibited by an inward-directed pH gradient. (2) Na+ uptake is inhibited by amiloride and its analogs and their relative effectiveness is similar in vesicles and A431 cells. (3) The Na+/H+ exchanger uses Na+ or Li+ as a substrate but not K+ or Cs+. (4) H+ efflux is stimulated by an inward-directed Na+ gradient and inhibited by the amiloride analog 5-N-dimethylamiloride. The Na+/H+ exchanger in these membrane vesicles is activated allosterically by low intravesicular pH. The apparent pKa of the activating site is 6.4-6.6, characteristic of the NA+/H+ exchanger before activation by mitogens.  相似文献   

16.
We have reexamined the possible role of the Na+/H+ antiport in the cellular response by PC12 pheochromocytoma cells to nerve growth factor (NGF). In contrast to previous reports, we observe no activation of Na+/H+ exchange in these cells, using a very sensitive assay based on the measurement of cytoplasmic pH with dimethylfluorescein dextran (Rothenberg et al., J. Biol. Chem., 258:4883-4809, 1983). Our measurements indicate that the PC12 pheochromocytoma cells, under all conditions tested, show a high rate of Na+/H+ exchange. The discrepancy between these observations and previous experiments could be due to differences in cells in different laboratories, but also to changes in cell adhesion induced by NGF. We describe conditions where intracellular pH and rates of Na+ uptake can be measured reliably in PC12 cells with adequate controls for cell adhesion. We conclude that activation of Na+/H+ exchange is neither sufficient nor required for the differentiation of PC12 cells induced by NGF.  相似文献   

17.
In mammalian nephrons, most of the Na(+) and HCO(3)(-) is reabsorbed by proximal tubular cells in which the Na(+)/H(+) exchanger 3 (NHE3) is the major player. The roles of NHEs in Na(+) uptake/acid-base regulation in freshwater (FW) fish gills are still being debated. In the present study, functional genomic approaches were used to clone and sequence the full-length cDNAs of the nhe family from zebrafish (Danio rerio). A phylogenetic tree analysis of the deduced amino acid sequences showed that zNHE1-8 are homologous to their mammalian counterparts. By RT-PCR analysis and double/triple in situ hybridization/immunocytochemistry, only zebrafish NHE3b was expressed in zebrafish gills and was colocalized with V-H(+)-ATPase but not with Na(+)-K(+)-ATPase, indicating that H(+)-ATPase-rich (HR) cells specifically express NHE3b. A subsequent quantitative RT-PCR analysis demonstrated that acclimation to low-Na(+) FW caused upregulation and downregulation of the expressions of znhe3b and zatp6v0c (H(+)-ATPase C-subunit), respectively, in gill HR cells, whereas acclimation to acidic FW showed reversed effects on the expressions of these two genes. In conclusion, both NHE3b and H(+)-ATPase are probably involved in Na(+) uptake/acid-base regulation in zebrafish gills, like mammalian kidneys, but the partitioning of these two transporters may be differentially regulated depending on the environmental situation in which fish are acclimatized.  相似文献   

18.
Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na(+)/H(+) exchanger (NHE) and Na(+) influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM-0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na(+), subsequent loss of intracellular K(+), an increase of Ca(2+) and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na(+), K(+) and Ca(2+) changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na(+) levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na(+) concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na(+) influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis.  相似文献   

19.
The cytoplasmic pH (pHi) was determined in isolated rat intestinal cells with four methods. The pHi of cells in physiological saline buffered with Hepes (pH 7.3) at 37 degrees C was close to 7.0. The most reliable method, using the fluorescent pH indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF), furnished a mean value of 7.03 +/- 0.05 (n = 42). The buffering capacity of intestinal cells determined with this fluorescent indicator was 62 +/- 5 mmol.l-1.pH-1. The mechanism governing the control of cytoplasmic pH was also investigated with BCECF, varying the Na+ concentration inside and outside the cells. When intestinal cells were suspended in a sodium-free medium in the presence or absence of ouabain, they became acidified. The process was reversed when Na+ was added to the incubation medium. An identical phenomenon occurred when the cells were artificially acidified with NH4Cl. Additional experiments led to the conclusion that isolated rat intestinal cells have an Na+/H+ exchanger independent of Cl- and inhibited by amiloride. This exchanger plays an important but not exclusive role in the control of pHi. The presence of other exchangers and the high buffering power of the cells explains the high stability of pHi noted in this study.  相似文献   

20.
The plasma membrane protein the Na(+)/H(+) exchanger isoform1 (NHE1) has been implicated in various cardiac pathologies including ischemia/reperfusion damage to the myocardium and cardiac hypertrophy. Levels of NHE1 protein and activity are elevated in cardiac disease; however, the mechanism by which these factors contribute to the accompanying hypertrophy in the myocardium is still not clear. To investigate the mechanism of NHE1-induced hypertrophy in the myocardium we constructed two adenoviral vectors expressing either wild type NHE1 protein or a constitutively active NHE1 protein. Infection of neonatal rat ventricular cardiomyocytes (NRVM) resulted in elevated expression of both wild type NHE1 or constitutively active NHE1. Only expression of activated NHE1 protein resulted in an increase in cell size and in an increase in protein synthesis in isolated cardiomyocyte cells. The results demonstrate that expression of activated NHE1 promotes cardiac hypertrophy in isolated cardiac cells and that simple elevation of levels of wild type NHE1 protein does not have a significant hypertrophic effect in NRVM. The results suggest that regulation of NHE1 activity is a critical direct effector of the hypertrophic effect induced in the myocardium by the NHE1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号