首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD45 is a leukocyte-specific, two domain transmembrane tyrosine phosphatase. Co-purification of a recombinant protein containing the first phosphatase domain of CD45 (6His-D1) with a recombinant protein containing the second phosphatase domain (GST-D2) from E. coli indicated a stable interaction which resulted in increased stability of the active phosphatase domain present in 6His-D1. This interaction was not dependent on the acidic region unique to CD45 domain 2, but was affected by a destabilizing point mutation (Q1180G) in GST-D2. CD45 domain 2 enhanced phosphatase activity of the first domain in the full length cytoplasmic domain protein, whereas a chimeric protein with the SH2 domain of p56(lck) in place of the CD45 C-terminal region did not. Thus the C-terminal domain of CD45 associates with the N-terminal domain and this stabilizes the active phosphatase domain. A single destabilizing point mutation in the second domain is sufficient to attenuate this effect.  相似文献   

2.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound, Kunitz-type serine protease inhibitor. HAI-1 inhibits serine proteases that have potent pro-hepatocyte growth factor-converting activity, such as the membrane-type serine protease, matriptase. HAI-1 comprises an N-terminal domain, followed by an internal domain, first protease inhibitory domain (Kunitz domain I), low-density lipoprotein receptor A module (LDLRA) domain, and a second Kunitz domain (Kunitz domain II) in the extracellular region. Our aim was to assess the roles of these domains in the inhibition of matriptase. Soluble forms of recombinant rat HAI-1 mutants made up with various combinations of domains were produced, and their inhibitory activities toward the hydrolysis of a chromogenic substrate were analyzed using a soluble recombinant rat matriptase. Kunitz domain I exhibited inhibitory activity against matriptase, but Kunitz domain II did not. The N-terminal domain and Kunitz domain II decreased the association rate between Kunitz domain I and matriptase, whereas the internal domain increased this rate. The LDLRA domain suppressed the dissociation of the Kunitz domain I-matriptase complex. Surprisingly, an HAI-1 mutant lacking the N-terminal domain and Kunitz domain II showed an inhibitor constant of 1.6 pm, and the inhibitory activity was 400 times higher in this HAI-1 mutant than in the mutant with all domains. These findings, together with the known occurrence of an HAI-1 species lacking the N-terminal domain and Kunitz domain II in vivo, suggest that the domain structure of HAI-1 is organized in a way that allows HAI-1 to flexibly control matriptase activity.  相似文献   

3.
Raf kinase is a key component in regulating the MAPK pathway. B-Raf has been reported as an oncogene and is mutated in 60% of human melanomas. The main focus of Raf regulation studies has been on phosphorylation, dephosphorylation, and scaffolding proteins; however, Raf also has its own auto-regulatory domain. Removal of the N-terminal regulatory domain, initially discovered in the viral Raf oncogene (v-Raf), results in a kinase domain with high basal activity independent of Ras activation. In this report, we show that activating phosphorylations are still required for activity of the truncated C-terminal kinase domain (called 22W). The interaction between the N-terminal regulatory domain and the C-terminal kinase domain is disrupted by activated Ras. Mutations in the Ras binding domain, cysteine-rich domain, or S259A do not affect the inhibition of 22W by the N-terminal domain. When phosphomimetic residues are substituted at the activating sites (DDED) in 22W, this results in a higher basal activity that is no longer inhibited by expression of the N-terminal domain, although binding to the N-terminal domain still occurs. Although the interaction between 22W/DDED and the N-terminal domain may be in a different conformation, the interaction is still disrupted by activated Ras. These data demonstrate that N-terminal domain binding to the kinase domain inhibits the activity of the kinase domain. However, this inhibition is relieved when the C-terminal kinase domain is activated by phosphorylation.  相似文献   

4.
5.
6.
Splicing variants of type 4 phosphodiesterases (PDE4) are regulated by phosphorylation. In these proteins, a conserved region is located between the amino-terminal domain, which is the target for phosphorylation, and the catalytic domain. Previous studies have indicated that nested deletions encompassing this region cause an increase in catalytic activity, suggesting this domain exerts an inhibitory constraint on catalysis. Here, we have further investigated the presence and function of this domain. A time-dependent increase in hydrolytic activity was observed when PDE4D3 from FRTL-5 cells was incubated with the endoproteinase Lys-C. The activation was abolished by protease inhibitors and was absent when a phosphorylated enzyme was used. Western blot analysis with PDE4D-specific antibodies indicated the Lys-C treatment separates the catalytic domain of PDE4D3 from the inhibitory domain. Incubation with antibodies recognizing an epitope within this domain caused a 3- to 4-fold increase in activity of native or recombinant PDE4D3. Again, PDE activation by these antibodies had properties similar to, and not additive with, the activation by protein kinase A phosphorylation. An interaction between the inhibitory domain and both regulatory and catalytic domains of PDE4D3 was detected by the yeast two-hybrid system. Mutations of Ser54 to Ala in the regulatory domain decreased or abolished this interaction, whereas mutations of Ser54 to the negatively charged Asp strengthened it. These data strongly support the hypothesis that an inhibitory domain is present in PDE4D and that phosphorylation of the regulatory domain causes activation of the enzyme by modulating the interaction between inhibitory and catalytic domains.  相似文献   

7.
8.
The adapter protein ADAP (FYB/SLAP-130) provides a critical link between T cell receptor (TCR) signaling and cell adhesion via the activation of integrins. The C-terminal 70 residues of ADAP show homology to SH3 domains; however, conserved residues of the fold are absent. An alignment and annotation of this domain has therefore been elusive. We have solved the three-dimensional structure of the ADAP C-terminal domain by NMR spectroscopy and show that it represents an altered SH3 domain fold. An N-terminal, amphipathic helix makes extensive contacts to residues of the regular SH3 domain fold, and thereby a composite surface with unusual surface properties is created. We propose this SH3 domain variant to be classified as a helically extended SH3 domain (hSH3 domain) and show that the ADAP-hSH3 domain can no longer bind conventional proline-rich peptides.  相似文献   

9.
Role of the ErbB-4 carboxyl terminus in gamma-secretase cleavage   总被引:1,自引:0,他引:1  
The ErbB-4 receptor tyrosine kinase has a PDZ domain recognition motif at its carboxyl terminus. The first step in ErbB-4 proteolytic processing is a metalloprotease-dependent cleavage of the receptor ectodomain, which is not influenced by deletion of this motif. Metalloprotease cleavage of ErbB-4 produces a membrane-associated 80-kDa fragment that is a substrate for subsequent gamma-secretase cleavage, which releases the cytoplasmic domain from the membrane and allows nuclear translocation of this fragment. Deletion of the PDZ domain recognition motif does abrogate the gamma-secretase cleavage of ErbB-4. The wild-type 80-kDa ErbB-4 fragment forms an association complex with presenilin, thought to be the catalytic moiety of gamma-secretase activity. However, this association is significantly impaired by loss of the PDZ domain recognition motif from ErbB-4. Deletion of this ErbB-4 motif prevents the nuclear localization of the ErbB-4 cytoplasmic domain. Data also show that the basal cleavage of wild-type ErbB-4 by this proteolytic system can produce a sufficient level of ErbB-4 processing to negatively influence cell growth and that loss of the PDZ domain recognition motif abrogates this response.  相似文献   

10.
MARCO is a type II transmembrane protein of the class A scavenger receptor family. It has a short N-terminal cytoplasmic domain, a transmembrane domain, and a large extracellular part composed of a 75-residue long spacer domain, a 270-residue collagenous domain, and a 99-residue long scavenger receptor cysteine-rich (SRCR) domain. Previous studies have indicated a role for this receptor in anti-microbial host defense functions. In this work we have produced the extracellular part of MARCO as a recombinant protein, and analyzed its binding properties. The production of this protein, soluble MARCO (sMARCO), has made it possible for the first time to study MARCO and its binding properties in a cell-free system. Using circular dichroism analyses, a protease-sensitive assay, and rotary shadowing electron microscopy, sMARCO was shown to have a triple-helical collagenous structure. Rotary shadowing also demonstrated that the molecules often associate with each other via the globes. sMARCO was found to bind avidly both heat-killed and living bacteria. Lipopolysaccharide, an important component of the outer membrane of Gram-negative bacteria, was shown to be a ligand of MARCO. Studies with different bacterial strains indicated that the O-side chain of lipopolysaccharide is not needed for the bacterial recognition. Finally, the C-terminal SRCR domain was also produced as a recombinant protein, and its bacteria-binding capability was studied. Although the transfection experiments with transmembrane MARCO variants have indicated a crucial role for this domain in bacterial binding, the monomeric domain exhibited low, barely detectable bacteria-binding activity. Thus, it is possible that cooperation between the SRCR domain and the collagenous domain is needed for high-affinity bacterial binding, or that the SRCR domain has to be in a trimeric form to effectively bind to bacteria.  相似文献   

11.
The SH3 domain, comprised of approximately 60 residues, is found within a wide variety of proteins, and is a mediator of protein-protein interactions. Due to the large number of SH3 domain sequences and structures in the databases, this domain provides one of the best available systems for the examination of sequence and structural conservation within a protein family. In this study, a large and diverse alignment of SH3 domain sequences was constructed, and the pattern of conservation within this alignment was compared to conserved structural features, as deduced from analysis of eighteen different SH3 domain structures. Seventeen SH3 domain structures solved in the presence of bound peptide were also examined to identify positions that are consistently most important in mediating the peptide-binding function of this domain. Although residues at the two most conserved positions in the alignment are directly involved in peptide binding, residues at most other conserved positions play structural roles, such as stabilizing turns or comprising the hydrophobic core. Surprisingly, several highly conserved side-chain to main-chain hydrogen bonds were observed in the functionally crucial RT-Src loop between residues with little direct involvement in peptide binding. These hydrogen bonds may be important for maintaining this region in the precise conformation necessary for specific peptide recognition. In addition, a previously unrecognized yet highly conserved beta-bulge was identified in the second beta-strand of the domain, which appears to provide a necessary kink in this strand, allowing it to hydrogen bond to both sheets comprising the fold.  相似文献   

12.
Fang Q  Kanugula S  Pegg AE 《Biochemistry》2005,44(46):15396-15405
O6-Alkylguanine-DNA alkyltransferase (AGT) is an important DNA repair protein that protects from alkylating agents by converting O6-alkylguanine to guanine forming S-methylcysteine in the AGT protein. The crystal structure of human AGT shows clearly the presence of two domains. The N-terminal domain contains a bound zinc atom, and zinc binding confers a mechanistic enhancement to repair activity, but this domain has no known function. The C-terminal domain contains all residues so far implicated in alkyl transfer including the cysteine acceptor site (Cys145), the O6-alkylguanine binding pocket, and a DNA binding domain. We have expressed and purified the two domains of human AGT separately. The C-terminal domain was totally inactive in vitro, but good activity forming S-alkylcysteine at Cys145 was obtained after recombination with the N-terminal domain via a freeze-thawing procedure. This suggests that the N-terminal domain plays a critical structural role in maintaining an active configuration of the C-terminal domain. However, this C-terminal domain alone had activity in protecting against the cytotoxic and mutagenic activity of the methylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) when expressed in Escherichia coli cells lacking endogenous AGT, suggesting that other proteins can fulfill this function. Remarkably, the free N-terminal domain of hAGT was able to repair O6-alkylguanine in vitro via alkyl transfer provided that zinc ions were present. The N-terminal domain was also able to produce moderate protection from MNNG when expressed in E. coli. This cryptic Zn2+-dependent DNA repair activity may be relevant to the evolution and function of AGTs.  相似文献   

13.
The three-dimensional structure of the bovine mitochondrial elongation factor (EF)-Tu.Ts complex (EF-Tumt.Tsmt) has been determined to 2.2-A resolution using the multi-wavelength anomalous dispersion experimental method. This complex provides the first insight into the structure of EF-Tsmt. EF-Tsmt is similar to Escherichia coli and Thermus thermophilus EF-Ts in the amino-terminal domain. However, the structure of EF-Tsmt deviates considerably in the core domain with a five-stranded beta-sheet forming a portion of subdomain N of the core. In E. coli EF-Ts, this region is composed of a three-stranded sheet. The coiled-coil domain of the E. coli EF-Ts is largely eroded in EF-Tsmt, in which it consists of a large loop packed against subdomain C of the core. The conformation of bovine EF-Tumt in complex with EF-Tsmt is distinct from its conformation in the EF-Tumt.GDP complex. When domain III of bovine EF-Tumt.GDP is superimposed on domain III of EF-Tumt in the EF-Tumt.Tsmt complex, helix B from domain I is also almost superimposed. However, the rest of domain I is rotated relative to this helix toward domain II, which itself is rotated toward domain I relative to domain III. Extensive contacts are observed between the amino-terminal domain of EF-Tsmt and domain I of EF-Tumt. Furthermore, the conserved TDFV sequence of EF-Tsmt also contacts domain I with the side chain of Asp139 contacting helix B of EF-Tumt and inserting the side chain of Phe140 between helices B and C. The structure of the EF-Tumt.Tsmt complex provides new insights into the nucleotide exchange mechanism and provides a framework for explaining much of the mutational data obtained for this complex.  相似文献   

14.
15.
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the “insert-in-flap” (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDΔIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.  相似文献   

16.
5-Lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis, is built of a catalytic C-terminal domain and a regulatory N-terminal C2-like domain. The C2-like domain is the target of many regulatory factors or proteins including Ca(2+), phospholipids, glycerides, coactosin-like protein and presumably other components that modulate the catalytic activity of 5-LO by acting at this domain, but the detailed underlying molecular mechanisms of these interactions are still unclear. In order to obtain the 5-LO C2-like domain as purified protein in good yields for further mechanistic studies and structure elucidation, a novel expression and purification approach has been applied. A plasmid was constructed expressing a fusion protein of maltose-binding protein (MBP) and the regulatory C2-like domain of 5-LO (AS 1-128), separated by a tobacco etch virus (TEV) protease-cleavage site. The fusion protein MBP-5LO1-128 could be essentially expressed as a soluble protein in Escherichia coli and was efficiently purified by amylose affinity chromatography. By means of this procedure, approximately 80mg purified fusion protein out of 1L E. coli culture were obtained. Digestion with TEV protease yielded the C2-like domain that was further purified using hydrophobic interaction chromatography. Alternatively, the uncleaved fusion protein MBP-5LO1-128 may be suitable to immobilize the C2-like domain on an amylose resin for co-factor interaction studies. Together, we present a convenient expression and purification strategy of the 5-LO C2-like domain that opens many possibilities for structural determination and mechanistic studies, aiming to reveal the precise role and function of this regulatory domain.  相似文献   

17.
Sulfate transporters in plants represent a family of proteins containing transmembrane domains that constitute the catalytic part of the protein and a short linking region that joins this catalytic moiety with a C-terminal STAS domain. The STAS domain resembles an anti-sigma factor antagonist of Bacillus subtilis, which is one distinguishing feature of the SLC26 transporter family; this family includes transporters for sulfate and other anions such as iodide and carbonate. Recent work has demonstrated that this domain is critical for the activity of Arabidopsis thaliana sulfate transporters, and specific lesions in this domain, or the exchange of STAS domains between different sulfate transporters, can severely impair transport activity. In this work we generated a Saccharomyces cerevisiae expression library of the A. thaliana Sultr1;2 gene with random mutations in the linking region-STAS domain and identified STAS domain lesions that altered Sultr1;2 biogenesis and/or function. A number of mutations in the beta-sheet that forms the core of the STAS domain prevented intracellular accumulation of Sultr1;2. In contrast, the linking region and one surface of the STAS domain containing N termini of the first and second alpha-helices have a number of amino acids critical for the function of the protein; mutations in these regions still allow protein accumulation in the plasma membrane, but the protein is no longer capable of efficiently transporting sulfate into cells. These results suggest that the STAS domain is critical for both the activity and biosynthesis/stability of the transporter, and that STAS sub-domains correlate with these specific functions.  相似文献   

18.
Ribosomal protein L1 has a dual function as a ribosomal protein binding 23S rRNA and as a translational repressor binding its mRNA. L1 is a two-domain protein with N- and C-termini located in domain I. Earlier it was shown that L1 interacts with the same targets on both rRNA and mRNA mainly through domain I. We have suggested that domain I is necessary and sufficient for specific RNA-binding by L1. To test this hypothesis, a truncation mutant of L1 from Thermus thermophilus, representing domain I, was constructed by deletion of the central part of the L1 sequence, which corresponds to domain II. It was shown that the isolated domain I forms stable complexes with specific fragments of both rRNA and mRNA. The crystal structure of the isolated domain I was determined and compared with the structure of this domain within the intact protein L1. This comparison revealed a close similarity of both structures. Our results confirm our suggestion that in protein L1 its domain I alone is sufficient for specific RNA binding, whereas domain II stabilizes the L1-rRNA complex.  相似文献   

19.
20.
The PhoR protein of Escherichia coli K-12 belongs to a family of structurally related sensor-kinases that regulate responses to environmental stimuli. These proteins are often located in the inner membrane with two membrane-spanning segments that are separated by a periplasmic domain, which is supposed to sense the environmental stimuli. However, the hydrophobicity plot of PhoR suggests a somewhat different topology in which a large periplasmic domain is lacking and an extended cytoplasmic domain is present besides the kinase domain. In protease-accessibility experiments and by using phoR-phoA gene fusions, the topology of PhoR was investigated and the absence of a large periplasmic domain was confirmed. Furthermore, the function of the extended cytoptasmic domain was studied by creating internal deletions. The mutations in this domain resulted in a constitutive expression of the pho regulon, indicating that the mutant PhoR proteins are locked in their kinase function. We propose that this extended cytoplasmic domain functions by sensing an internal signal that represses the kinase function of the PhoR protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号