首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxidation of the 15-hydroxy group of prostaglandins of the A, E, and F series by the NAD+-dependent prostaglandin dehydrogenase (PGDH) has been well documented. In addition to prostaglandins, we have observed that the purified lung PGDH also will oxidize 15-HETE to a novel metabolite that was isolated by reverse-phase HPLC and identified by gas chromatography-mass spectrometry as the 15-keto-5,8,11-cis-13-trans-eicosatetraenoic acid (15-KETE). The Km for 15-HETE was 16 microM, which was 2.5 times lower than the value obtained for PGE1. In addition to 15-HETE, 5,15-diHETE and 8,15-diHETE also were substrates for the lung PGDH with Km values of 138 and 178 microM, respectively. Other hydroxy derivatives of eicosatetraenoic acid that did not have a hydroxy group at carbon atom 15 did not support the PGDH-mediated reduction of NAD+. In addition to the 15-hydroxy derivatives of eicosatetraenoic acid, 12-HHT also was a substrate for the lung enzyme with a Km of 12 microM. These data indicate that omega 6-hydroxy fatty acids, in addition to prostaglandins, are also substrates of the lung NAD+-dependent PGDH and that the enzyme does not require the cyclopentane ring of prostaglandins.  相似文献   

3.
Present evidence suggests that skin is an important organ of prostaglandin metabolism. To clarify its role, the basic kinetics of 15-hydroxyprostaglandin dehydrogenase (PGDH) from rat skin were investigated with either NAD+ of NADP+ as co-substrate. Prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) were used as substrates and preliminary studies were made of the inhibitory effects of the reduced co-substrates NADH and NADPH. A radiochemical assay was used in which [3H]PGF2 alpha or [14C]PGE2 were incubated with high-speed supernatant of rat skin homogenates. The substrate and products were then extracted by solvent partition, separated by t.l.c. and quantified by liquid-scintillation counting. At linear reaction rates and at an NAD+ concentration of 10 mM the mean apparent Km for PGF2 alpha was 24 microM with a mean apparent Vmax. of 9.8 nmol/s per litre of reaction mixture. For PGE2 the mean apparent Km was 8 microM, with a mean apparent Vmax, of 2.7 nmol/s per litre of reaction mixture. With NADP+ as a co-substrate at a concentration of 5 mM a mean apparent Km of 23 microM was obtained for PGF2 alpha with a mean apparent Vmax. of 5.2 nmol/s per litre. For PGE2 values of 7.5 microM and 3.0 nmol/s per litre were obtained respectively. These results show that skin contains NAD+- and NADP+-dependent PGDH. An important finding was that the NADP+-linked enzyme gave Km values for PGE2 that were considerably lower than those reported for NADP+-linked PGDH from other tissues. Furthermore, preliminary inhibition studies with the NAD+-linked PGDH system indicate that this enzyme is not only inhibited by NADH, but also by NADPH, a property not previously reported for NAD+-linked PGDH derived from other tissues.  相似文献   

4.
D-beta-Hydroxybutyrate dehydrogenase (D-3-hydroxybutyrate:NAD+ oxidoreductase, EC 1.1.1.30) is a lipid-requiring enzyme which specifically requires phosphosphatidylcholine for enzymic activity. The phosphatidylcholine modifies the binding and orientation of the coenzyme, NAD(H), with respect to the enzyme. In the present study, two derivatives of NAD, spin-labeled either at N-6 or C-8 of the adenine ring, were found to be active as coenzyme. The binding affinity of NADH to the enzyme was opitimized by increasing the salt concentration and increasing the pH from 6 to 8, with the pK at 6.8. Monomethylmalonate, a substrate analogue, was found to enhance NADH binding (Kd is reduced from 4 to 1 microM). Sulfite strongly enhances the binding of NAD+ via the enzyme-catalyzed formation of an adduct of sulfite with the nucleotide; the Kd for binding of NAD-sulfite is in the micromolar range, whereas NAD+ binding is more than a magnitude weaker. The binding of spin-labeled NAD(H) was further characterized by EPR spectroscopy. Increased sensitivity and resolution were obtained with the use of NAD(H) analogues perdeuterated in the spin-label moiety. For these analogues bound to D-beta-hydroxybutyrate dehydrogenase in phospholipid vesicles, EPR studies showed the spin-label moiety to be constrained and revealed two distinct components. Increasing the viscosity of the medium by addition of glycerol affected the EPR spectral characteristics of only the component with the smaller resolved averaged hyperfine splitting. The stage is now set to study motional characteristics of the enzyme, using these spin-labeled probes which mimic the coenzyme.  相似文献   

5.
The present experiments report the effects of estradiol or of progesterone on the activity of 15-prostaglandin-dehydrogenase (PGDH) in the uterus of spayed rats. When the substrate was PGF2 alpha the treatment with progesterone (4 mg X day-1, two days) or with estradiol-17-beta (0.5 ug + 1 ug) did not show any effect on the activity of the enzyme. On the contrary, uteri from ovariectomized rats injected with a higher dose of estradiol-17-beta (0.5 ug + 50 ug) exhibited a significant increment. When the substrate was PGE2, progesterone failed again to modify the enzyme activity, whereas estradiol, both at a low and at a high doses, enhanced significantly the uterine PGDH activity. The possibility of two different PGDHs for each PG and the role of estradiol in enhancing PGE2 catabolism into 15-keto-PGE2 as a mechanism subserving the effect of estrogens on the output of this PG in the rat uterus, are discussed.  相似文献   

6.
The synthesis and biological evaluation of three series of 6-phosphogluconate (6PG) analogues is described. (2R)-2-Methyl-4,5-dideoxy, (2R)-2-methyl-4-deoxy and 2,4-dideoxy analogues of 6PG were tested as inhibitors of 6-phosphogluconate dehydrogenase (6PGDH) from sheep liver and also Trypanosoma brucei where the enzyme is a validated drug target. Among the three series of analogues, seven compounds were found to competitively inhibit 6PGDH from T. brucei and sheep liver enzymes at micromolar concentrations. Six inhibitors belong to the (2R)-2-methyl-4-deoxy series (6, 8, 10, 12, 21, 24) and one is a (2R)-2-methyl-4,5-dideoxy analogue (29b). The 2,4-dideoxy analogues of 6PG did not inhibit both enzymes. The trypanocidal effect of the compounds was also evaluated in vitro against T. brucei rhodesiense as well as other related trypanosomatid parasites (i.e., Trypanosoma cruzi and Leishmania donovani).  相似文献   

7.
The specific activity of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was found to increase in the ovaries of pregnant and pseudopregnant rabbits. The mean specific activity of cytosolic ovarian PGDH in 14- to 28-day pregnant rabbits was 24.3 +/- 8.1 nmol NADH formed/min/mg protein (n = 16) using PGE1 as substrate whereas in nonpregnant rabbits the specific activity was 1.5 +/- 0.8 nmol NADH formed/min/mg protein (n = 8). The reaction was dependent on NAD+; NADP+ did not support the reaction. In grouping the PGDH activities from pregnant rabbits into second (14-18 days) and third (2-28 days) trimester periods, no significant difference between values was found (26.1 +/- 8.9 vs 23.4 +/- 8.1 nmol NADH formed/min/mg protein, respectively). Western blot analysis of the ovarian cytosol using an antibody which was made to the purified lung PGDH of pregnant rabbits recognized an ovarian protein of identical molecular mass (30 kDa). Ovarian PGDH activities were also examined in rabbits treated with pregnant mare's serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG) to induce a state of superovulatory/pseudopregnancy and only on day 11 following hCG treatment was an increase in PGDH specific activity observed. On day 11, the specific activity was 14.8 +/- 4.3 nmol NADH formed/min/mg protein whereas values on days 10 and 12 were only 1.1 +/- 1.1 and 1.0 +/- 0.8, respectively. PGDH activities on days 3, 7 and 16 were also low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

9.
Oestradiol-17beta:NAD+ 17-oxidoreductase from human placenta can accept coenzyme analogues of NAD+ and NADP+ where the amide group is replaced by methyl ketone, nitrile or thioamide. The inhibition with analogues of NAD+ has been studied. The presence of a substituent at C-3 of the pyridinium ring is necessary for the binding. The inhibition by C-4 methylated analogues is very poor, and the effect of a methyl group at C-5 depends on the substituent at C-3. The 1,4,5,6-tetrahydronicotinamide adenine dinucleotide is a competitive inhibitor. Nicotinamide 8-bromoadenine dinucleotide and nicotinamide 8-thioadenine dinucleotide are efficient hydrogen acceptors.  相似文献   

10.
The present experiments report the effects of estradiol or of progesterone on the activity of 15-prostaglandin-dehydrogenase (PGDH) in the uterus of spayed rats. When the substrate was PGF the treatment with progesterone (4 mg.day−1, two days) or with estradiol-17-beta (0.5 ug + 1 ug) did not show any effect on the activity of the enzyme. On the contrary, uteri from ovariectomized rats injected with a higher dose of estradiol- 17-beta (0.5 ug + 50 ug) exhibited a significant increment. When the substrate was PGE2, progesterone failed again to modify the enzyme activity, whereas estradiol, both at a low and at a high doses, enhanced significantly the uterine PGDH activity. The possibility of two different PGDHs for each PG and the role of estradiol in enhancing PGE2 catabolism into 15-keto- PGE2 as a mechanism subserving the effect of estrogens on the output of this PG in the rat uterus, are discussed.  相似文献   

11.
Two spin-labeled analogues of AMP and NAD+ were synthesized, in which a perdeuterated nitroxide radical (4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPAMINE) was attached to C-6 or C-8 position of the adenine ring. The ESR spectra of these derivatives exhibit a 4-fold increase in sensitivity and a concomitant decrease in line-width as compared to the corresponding protonated analogues. The improved resolution of composite spectra consisting of freely tumbling and immobilized components is demonstrated in ternary complexes of the spin-labeled NAD+ derivatives with lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) and oxalate.  相似文献   

12.
The tetrameric glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle binds NAD+ and some of its analogues in a negatively cooperative manner, whereas other NAD+ analogues bind non-cooperatively to this enzyme. Subsequent to alkylation of a fraction of the active sites of the enzyme with the fluorescent SH reagent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine, it was found that the alkylated sites bind NAD+ and NAD+ analogues with a markedly reduced affinity as compared with non-alkylated sites. It was therefore feasible to measure the fluorescence and the circular polarization of the luminescence of the enzyme-bound alkyl groups as a function of binding of NAD+ and of NAD+ analogues to the non-alkylated sites. The changes observed indicate that ligand binding to the non-alkylated sites induces changes in the fluorescence properties of the alkyl groups bound to neighbouring subunits, most likely through the protein moiety. The nature of these changes appears to depend on the structure of the coenzyme analogue. The binding of the non-cooperative binders acetyl-pyridine--adenine dinucleotide, ATP and ADP-ribose induce different conformational changes in the neighbouring vacant subunit, as monitored by the spectroscopic properties of the bound alkyl group. These results in conjunction with other data support the view that the negative cooperativity in NAD+ binding to glyceraldehyde-3-phosphate dehydrogenase results from ligand-induced conformational changes. Furthermore, these results further support the view that subtle structural changes in the coenzyme molecule determine the nature of the conformational changes induced within the enzyme tetramer.  相似文献   

13.
Abstract— The incubation of cerebral cortical slices for 15 min in Krebs-Ringer-tris (pH 7.6) solution at 37°C with [1-14C]glucose or [6-14C]glucose as substrates yielded a C-1:C-6 14CO2 ratio of 1.21, whereas this ratio increased to 3.01 after the application of electrical stimulation (ES). Tissue levels of 6-phosphoglu-conate (6PG) and glucose 6-phosphate (G6P), intermediary metabolites of hexose monophosphate (HMP) pathway, were 7 and 180 nmol/g tissue following 15 min incubation, and increased by 33 and 45 per cent respectively following the application of ES. Activities of 6-phosphogluconate dehydrogenase (6PGDH, 6-phospho- d -gluconate: NADP+ 2-oxidoreductase, EC 1.1.1.44) and glucose-6-phosphate dehydrogenase (G6PDH, d -glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49), important enzymes in regulating the activity of HMP pathway, in cerebral cortical slices were 689 and 907 pmol/mg protein/min and were increased by 66 and 25 per cent respectively by the application of ES. Synaptosomal G6PDH and 6PGDH activities were maximally activated by the addition of 40 m m -Na+ to the reaction mixture, whereas no activation by Na+ was observed in microsomal G6PDH and 6PGDH. Amobarbital inhibited more strongly the Embden–Meyerhof (EM) pathway than the HMP pathway, while imipramine had a stronger inhibitory effect on HMP pathway than on EM pathway in the electrically stimulated cerebral tissues.
The present results indicate that the HMP shunt pathway in the cerebral cortex is activated by the application of ES in vitro , possibly at synaptic regions and may play an important metabolic and functional role in the brain.  相似文献   

14.
An NAD(+)-dependent CDP-D-glucose oxidoreductase which catalyzes the first step of the biosynthesis of CDP-ascarylose (CDP-3,6-dideoxy-L-arabino-hexose), converting CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose, was isolated from Yersinia pseudotuberculosis. A protocol consisting of DEAE-cellulose, Matrex Blue-A, hydroxylapatite, DEAE-Sephadex, Sephadex G-100, and NAD(+)-agarose column chromatography was used to purify this enzyme 6000-fold to homogeneity. This enzyme consists of two identical subunits, each with a molecular weight of 42,500. Using CDP-D-glucose as the substrate, the Km and Vmax of this catalysis were determined to be 222 microM and 8.3 mumols mg-1 min-1, respectively. Unlike most other oxidoreductases of its class which have a tightly bound NAD+, this highly purified CDP-D-glucose oxidoreductase showed an absolute requirement of NAD+ for its activity. Using chemically synthesized (6S)- and (6R)-CDP-D-[4-2H,6-3H]glucose as substrates, a stereochemical analysis showed this enzymatic reaction involves an intramolecular hydrogen migration from C-4 to C-6, and the displacement of C-6 hydroxyl group by the C-4 hydrogen occurs with inversion. Thus, despite the low cofactor affinity, this enzyme undergoes a mechanism consistent with that followed by other members of its type. Such a mechanistic and stereochemical convergency found for all sugar oxidoreductases so far characterized suggests the presence of a common progenitor of this class of enzyme.  相似文献   

15.
15-Hydroxyprostaglandin dehydrogenase (15PGDH) is the primary enzyme catalyzing the conversion of hydroxylated arachidonic acid species to their corresponding oxidized metabolites. The oxidation of hydroxylated fatty acids, such as the conversion of prostaglandin (PG) E2 to 15-ketoPGE2, by 15PGDH is viewed to inactivate signaling responses. In contrast, the typically electrophilic products can also induce anti-inflammatory and anti-proliferative responses. This study determined that hydroxylated docosahexaenoic acid metabolites (HDoHEs) are substrates for 15PGDH. Examination of 15PGDH substrate specificity was conducted in cell culture (A549 and primary human airway epithelia and alveolar macrophages) using chemical inhibition and shRNA knockdown of 15PGDH. Substrate specificity is broad and relies on the carbon position of the acyl chain hydroxyl group. 14-HDoHE was determined to be the optimal DHA substrate for 15PGDH, resulting in the formation of its electrophilic metabolite, 14-oxoDHA. Consistent with this, 14-HDoHE was detected in bronchoalveolar lavage cells of mild to moderate asthmatics, and the exogenous addition of 14-oxoDHA to primary alveolar macrophages inhibited LPS-induced proinflammatory cytokine mRNA expression. These data reveal that 15PGDH-derived DHA metabolites are biologically active and can contribute to the salutary signaling actions of Ω-3 fatty acids.  相似文献   

16.
1. The interaction of NAD+, NADH and various nucleotide analogues with pig kidney alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum) EC 3.1.3.1) has been investigated by kinetic means. Some inhibitors act uncompetitively whereas others markedly increase the slopes of double reciprocal plots suggesting they have some affinity for the free enzyme. 2. The compounds seem to bind to alkaline phosphatase through interactions of their bases with a relatively non-specific region of the enzyme, although it is likely that for those nucleotides having some affinity for the free enzyme there is some attraction between the pyrophosphate backbone and the active site. 3. From studies of the effect of NAD+ and NADH on ATPase activity it was concluded that the substrate inhibition that is characteristic of the ATPase activity of alkaline phosphatase originates from binding of ATP to the site assumed to exist for NAD+ and NADH. The potentiation of NAD+-inhibition of ATPase activity by Mg-2+ is probably a result of the depletion of [ATP-4-] the true substrate. The depletion allows NAD+ to complete more effectively for the active site. 4. Binding of NADH is favoured by protonation of an enzymic group with a pK of approx. 9.0 belonging possibly to a tyrosine residue or a zinc hydrate. 5. A large entropy decrease was found to accompany the binding of NAD+ and NADH to alkaline phosphatase. This may be further evidence of an "induced-fit" mechanism previously suspected because of the synergistic inhibitory effects of adenosine and nicotinamide.  相似文献   

17.
We evaluated the changes in mRNA expression of cytosolic phospholipase A(2)(cPLA(2)) and 15-hydroxyprostaglandin dehydrogenase (PGDH) in intrauterine and gestational tissues during mid-late murine pregnancy. Tissues (decidual caps, fetal membranes, and placentae, uterus, and cervix) were collected from pregnant mice at days 12, 14, 16, 18, and 19 (am and pm) of gestation. Total RNA was isolated and evaluated for cPLA(2)and PGDH expression by northern blot analysis normalized to GAPDH expression. Expression of mRNA for cPLA(2)increased in the placentae and decidual caps on day 18 and 19 pm, respectively. There was also increased expression for PGDH mRNA in the placenta and fetal membranes at the later stages of pregnancy. The tissue specific differences in expression of cPLA(2)and PGDH suggest that changes in enzymatic regulation of PG production and degradation may be crucial for the initiation of labour.  相似文献   

18.
The geometry of seven NAD+ analogues bound to horse liver alcohol dehydrogenase (LADH) modified only in their nicotinamide group, have been studied using AMBER molecular mechanics energy-minimization procedures. Starting geometries were taken from X-ray crystallographic data for NAD+/Me2SO/LADH reported by Eklund and co-workers. In this study the NAD+ analogues were encaged by the constituent amino acids of the enzyme within a range of 0.6 nm from the initial NAD+/Me2SO/Zn2+ complex. The calculational method used is able to rationalize individual substituent effects and to evaluate the essential interactions between NAD+ analogue, enzyme, Me2SO and Zn2+ without the necessity of additional X-ray data. The results presented here demonstrate that the reactivity of NAD+ derivatives as reported in literature can be qualitatively related to the position of the pyridine moiety in the active site.  相似文献   

19.
The S-adenosyl-l-homocysteine (AdoHcy) hydrolases catalyze the reversible conversion of AdoHcy to adenosine and homocysteine, making use of a catalytic cycle in which a tightly bound NAD+ oxidizes the 3-hydroxyl group of the substrate at the beginning of the cycle, activating the 4-CH bond for elimination of homocysteine, followed by Michael addition of water to the resulting intermediate and a final reduction by the tightly bound NADH to give adenosine. The equilibrium and kinetic properties of the association and dissociation of the cofactor NAD+ from the enzymes of Homo sapiens (Hs-SAHH) and Trypanosoma cruzi (Tc-SAHH) are qualitatively similar but quantitatively distinct. Both enzymes bind NAD+ in a complex scheme. The four active sites of the homotetrameric apoenzyme appear to divide into two numerically equal classes of active sites. One class of sites binds cofactor weakly and generates full activity very rapidly (in less than 1 min). The other class binds cofactor more strongly but generates activity only slowly (>30 min). In the case of Tc-SAHH, the final affinity for NAD+ is roughly micromolar and this affinity persists as the equilibrium affinity. In the case of Hs-SAHH, the slow-binding phase terminates in micromolar affinity also, but over a period of hours, the dissociation rate constant decreases until the final equilibrium affinity is in the nanomolar range. The slow binding of NAD+ by both enzymes exhibits saturation kinetics with respect to the cofactor concentration; however, binding to Hs-SAHH has a maximum rate constant around 0.06 s-1, while the rate constant for binding to Tc-SAHH levels out at 0.006 s-1. In contrast to the complex kinetics of association, both enzymes undergo dissociation of NAD+ from all four sites in a single first-order reaction. The equilibrium affinities of both Hs-SAHH and Tc-SAHH for NADH are in the nanomolar range. The dissociation rate constants and the slow-binding association rate constants for NAD+ show a complex temperature dependence with both enzymes; however, the cofactor always dissociates more rapidly from Tc-SAHH than from Hs-SAHH, the ratio being around 80-fold at 37 degrees C, and the cofactor binds more rapidly to Hs-SAHH than to Tc-SAHH above approximately 16 degrees C. These features present an opening for selective inhibition of Tc-SAHH over Hs-SAHH, demonstrated with the thioamide analogues of NAD+ and NADH. Both analogues bind to Hs-SAHH with approximately 40 nM affinities but much more weakly to Tc-SAHH (0.6-15 microM). Nevertheless, both analogues inactivated Tc-SAHH 60% (NAD+ analogue) or 100% (NADH analogue) within 30 min, while the degree of inhibition of Hs-SAHH approached 30% only after 12 h. The rate of loss of activity is equal to the rate of dissociation of the cofactor and thus 80-fold faster at 37 degrees C for Tc-SAHH.  相似文献   

20.
The early steps of the proposed mechanistic pathway for dehydroquinate synthase have been probed with a series of substrate analogues. These analogues, 3-9, are structurally prohibited from undergoing the beta-elimination of inorganic phosphate that represents the committed step in the conversion of the substrate 3-deoxy-D-arabino-heptulosonate 7-phosphate (1) to dehydroquinate (2). In agreement with previous observations, the analogues that possess shortened side chains (3,5, and 6) bind more tightly to the enzyme than those (4 and 7-9) that are more nearly isosteric with the substrate. Two hitherto unrecognized factors that influence binding have been identified: (i) carbacylic analogues bind 25-100 times more tightly than the corresponding oxacyclic materials (indeed, the carbacyclic phosphonate 5 has a Ki value of 8 x 10(-10)M) and (ii) the side chain appears to be bound in a gauche conformation similar to the most stable conformation of the cis-vinylhomophosphonate 8. These trends in binding can be rationalized by considering the behavior of the analogues in the first two chemical steps of the mechanism: NAD+-mediated oxidation at C-5 and enolization at C-6 (the first part of the E1cB elimination of inorganic phosphate). Direct spectrophotometric determination of the equilibrium level of enzyme-bound NADH indicates that the carbacyclic analogues are more readily oxidized than the oxacyclic compounds, and this predictable difference in redox behavior is reflected in the observed differences in binding. The gauche conformation of the C-7 side chain appears to be required for proton abstraction from C-6, since only those analogues that can adopt this conformation undergo enzyme-catalyzed exchange of the C-6 proton with the solvent. This conformation positions one of the peripheral oxygens of the phosphate (or phosphonate) group close to the C-6 proton. Taken together with other data, these results suggest that the enzyme exploits this substrate base in the enolization, which occurs through an intramolecular proton transfer. The loss of Pi then completes the beta-elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号