首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
4.
5.
6.
《The New phytologist》1998,139(3):595-595
The following citations were erroneously omitted from the 'References':
Groffman PM, Zak DR, Christensen S, Mosier A, Tiedje JM. 1993. Early spring nitrogen dynamics in a temperate forest landscape. Ecology 74 : 1579–1585.
Handley LL, Brendel O, Scrimgeour CM, Schmidt S, Raven JA, Turnbull MH, Stewart GR. 1996. The 15N natural abundance patterns of field-collected fungi from three kinds of ecosystems. Rapid Communications in Mass Spectrometry 10 : 974–978.
Handley LL, Daft MJ, Wilson J, Scrimgeour CM, Ingleby K, Sattar, MA. 1993. Effects of the ecto- and VA-mycorrhizal fungi Hydnagium carneum and Glomus clarum on the δ15N and δ13C values of Eucalyptus globulus and Ricinus communis. Plant, Cell and Environment 16 : 375–382.
Handley LL, Odee D, Scrimgeour CM. 1994. δ15N and δ13C patterns in savanna vegetation: dependence on water availability and disturbance. Functional Ecology 8 : 306–314.
Handley LL, Raven JH. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology: commissioned review. Plant, Cell and Environment 15 : 965–985.
Handley LL, Scrimgeour CM. 1997. Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Advances in Ecological Research 27 : 133–212.
Hansen AP, Pate JS. 1987. Evaluation of the 15N natural abundance method and xylem sap analysis for assessing N2 fixation of understorey legumes in jarrah ( Eucalyptus marginata Donn ex Sm.) forest in S.W. Australia. Journal of Experimental Botany 38 : 1446–1458.
New Phytologist apologizes unreservedly to all authors of the above papers for this error.  相似文献   

7.
Stomatal density (SD) and stomatal conductance ( g s) can be affected by an increase of atmospheric CO2 concentration. This study was conducted on 17 species growing in a naturally enriched CO2 spring and belonging to three plant communities. Stomatal conductance, stomatal density and stomatal index (SI) of plants from the spring, which were assumed to have been exposed for generations to elevated [CO2], and of plants of the same species collected in a nearby control site, were compared. Stomatal conductance was significantly lower in most of the species collected in the CO2 spring and this indicated that CO2 effects on g s are not of a transitory nature but persist in the long term and through plant generations. Such a decrease was, however, not associated with changes in the anatomy of leaves: SD was unaffected in the majority of species (the decrease was only significant in three out of the 17 species examined), and also SI values did not vary between the two sites with the exception of two species that showed increased SI in plants grown in the CO2-enriched area. These results did not support the hypothesis that long-term exposure to elevated [CO2] may cause adaptive modification in stomatal number and in their distribution.  相似文献   

8.
9.
何汐然  丁晓雪  许毓哲  李君 《生态学报》2022,42(15):6150-6159
气孔调节是植物适应水分条件变化的关键途径,研究多变生境中植物气孔行为对认识植物的适应具有重要意义。洪水漫溢新形成的河漫滩是胡杨更新的自然生境,其土壤质地和地下水埋深具高度时空异质性。已有研究主要集中于胡杨对地下水埋深变化的生理生态响应,而对土壤质地与地下水变化交互作用影响植物水分关系的认识不足。通过设置土壤质地(砂土(S1)、砂壤土(S2)、黏壤土(S3)与地下水埋深(W1(30 cm)、W2(60 cm)、W3(90 cm))交互试验模拟幼龄胡杨自然生境,观测分析了不同条件下胡杨气孔导度(Gs)、气孔导度斜率(g1)、光合的气孔限制(Ls)的变化。研究结果表明:(1)胡杨气孔行为对地下水变化的响应受土壤质地影响;(2)相同地下水埋深时不同土质间Gs具显著差异,W1时S2与S3的Gs...  相似文献   

10.
11.
12.
毛竹(Phyllostachys pubescens)叶光合作用的气孔限制研究   总被引:6,自引:1,他引:5  
运用Farquhar和Sharkey(1982)提出的两个判据——细胞间隙CO_2浓度(C_i)和气孔限制值(L_s),从几个不同的侧面研究了毛竹光合作用的气孔限制。虽然观测到气孔导度(G_s)与光合速率(P_n)随着气温、光量子通量密度的降低和叶水分胁迫的加剧而大体上平行地下降,但是在低的环境温度、低的光量子通量密度和严重的水分胁迫下,气孔导度的下降不是光合速率下降的主要原因,因为这时C_i在上升,而L_s下降。然而,在低的空气湿度和轻微水分胁迫下,C_i的下降和L_s的上升都证明,这时气孔导度的下降是光合速率降低的主要原因。  相似文献   

13.
14.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

15.
Relationships between nitrogen (N) content and growth are routinely measured in plants. This study determined the effects of N on the separate morphological and physiological components of plant growth, to assess how N-limited growth is effected through these components. Lettuce ( Lactuca sativa ) plants were grown hydroponically under contrasting N-supply regimes, with the external N supply either maintained continuously throughout the period of study, or withdrawn for up to 14 d. Richards' growth functions, selected using an objective curve-fitting technique, accounted for 99.0 and 99.1% of the variation in plant dry weight for control and N-limited plants respectively. Sublinear relationships occurred between N and relative growth rates under restricted N-supply conditions, consistent with previous observations. There were effects of treatment on morphological and physiological components of growth. Leaf weight ratio increased over time in control plants and decreased in N- limited plants. Shoot:root ratio followed a similar pattern. On a whole-plant basis, assimilation of carbon decreased in N-limited plants, a response paralleled by differences in stomatal conductance between treatments. Changes in C assimilation, expressed as a function of stomatal conductance to water vapour, suggest that the effects of N limitation on growth did not result directly from a lack of photosynthetic enzymes. Relationships between plant N content and components of growth will depend on the availability of different N pools for remobilization and use within the plant.  相似文献   

16.
In the present study the response of stomatal conductance (gs) to increasing leaf‐to‐air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200–550 µmol mol?1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non‐hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2.  相似文献   

17.
Plants with the C4 photosynthetic pathway have predominantly one of three decarboxylation enzymes in their bundle sheath cells. Within the grass family (Poaceae) bundle sheath leakiness to CO2 is purported to be lowest in the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME, EC 1.1.1.40) group, highest in the NAD-ME (EC 1.1.1.39) group and intermediate in the phosphoenolpyruvate carboxykinase (PCK, EC 4.1.1.32) group. We investigated the hypothesis that growth and photosynthesis of NAD-ME C4 grasses would respond more to elevated CO2 treatment than NADP-ME grasses. Plants were grown in 8-1 pots in growth chambers with ample water and fertilizer for 39 days at a continuous CO2 concentration of either 350 or 700 µl l?1. NAD-ME species included Bouteloua gracilis Lag. ex Steud (Blue grama), Buchloe dactyloides (Nutt.) Engelm. (Buffalo grass) and Panicum virgatum L. (Switchgrass) and the NADP-ME species were Andropogon gerardii Vittman (Big bluestem), Schizachyrium scoparium (Michx.) Nash (Little bluestem), and Sorghastrum nutans (L.) Nash (Indian grass). Contrary to our hypothesis, growth of the NADP-ME grasses was generally greater under elevated CO2 (significant for A. gerardii and S. nutans), while none of the NAD-ME grasses had a significant growth response. Increased leaf total non-structural carbohydrate (TNC) was associated with greater growth responses of NADP-ME grasses. Decreased leaf nitrogen in NADP-ME species grown at elevated CO2 was found to be an artifact of TNC dilution. Assimilation (A) vs intercellular CO2 (Ci) curves revealed that leaf photosynthesis was not saturated at 350 µl l?1 CO2 in any of these C4 grasses. Assimilation of elevated CO2-grown A. gerardii was higher than in plants grown in ambient CO2. In contrast, B. gracilis grown in elevated CO2 displayed lower A, a trait more commonly reported in C3 plants. Photosynthetic acclimation in B. gracilis was not related to leaf TNC or nitrogen concentrations, but A:Ci curves suggest a reduction in activity of both phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39). Some adaptation of stomatal functioning was also seen in B. gracilis and A. gerardii leaves grown in elevated CO2. Our study shows that C4 grasses have the capacity for increased growth and photosynthesis under elevated CO2 even when water and nutrients are non-limiting. While it was the NADP-ME species which had significant responses in the present study, we have previously reported significant growth increases in elevated CO2 for B. gracilis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号