首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear dependence of the amplitude of excitatory postsynaptic potentials on the membrane potentials was derived. The existence of a region of oscillation stability with an increase in the mean value of nonspecific afferent inflow was demonstrated. A high-frequency oscillation component (40–60 Hz) appears with a pronounced increase in the afferent inflow; this can cause instability in oscillations and abnormal brain activity.  相似文献   

2.
Bakharev BV 《Biofizika》2008,53(5):874-878
A nonlinear voltage dependence between the membrane and excitatory postsynaptic potentials coming via corticocortical connections was derived based on literature data. The existence of a region of stability of oscillations with increasing mean value of nonspecific afferent input was shown. As the afferent input strongly increases, a high-frequency component of oscillations (40-60 Hz), appeas which may result in the instability of oscillations and initiation of abnormal brain activity.  相似文献   

3.
J E Huettner 《Neuron》1990,5(3):255-266
Primary afferent C fibers in rat dorsal roots are depolarized by the excitatory amino acids kainate and domoate. Under whole-cell voltage clamp, kainate and domoate increase membrane conductance in a subpopulation of freshly dissociated DRG neurons. In contrast to kainate currents observed in CNS neurons, responses to kainate and domoate in DRG cells desensitize with prolonged agonist exposure. Half-maximal activation is achieved with much lower concentrations of kainate and domoate in sensory neurons than in CNS neurons from cerebral cortex. Rapid applications of glutamate, quisqualate, and AMPA evoke a transient current in DRG neurons and desensitize cells to subsequent applications of kainate or domoate. Brief incubation with the lectin concanavalin A eliminates desensitization to excitatory amino acids; after treatment with concanavalin A, all five agonists gate sustained currents of similar amplitude via the same receptor.  相似文献   

4.
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.  相似文献   

5.
In acute experiments on cats performed under nembutal anesthesia the stimulation of sensorimotor zone in cerebral hemisphere cortex changed the impulse activity of interneurons of bulbar cardiovascular centre and not of the afferent neurons. The analysis of the activity of afferent neurons and interneurons has shown a decrease in coordination between the reaction of these cells to the development of ischemic myocardial lesions during the cortex stimulation. In these conditions bulbar cardiovascular neurons could both increase and decrease the impulse activity. These changes seem to be the reason for the growing incidence of idioventricular ischemic arrhythmias during cortical stimulation.  相似文献   

6.
Comparative analysis of characteristics of rhythmic theta-activity in the neurones of the medial septal nucleus and nucleus of diagonal band was performed in intact rabbits after. i. v. injection of pentobarbital, and in rabbits with chronic lesion of the ascending brain-stem afferent fibers. In both conditions theta-bursts disappeared in some cells with unstable periodic rhythmic modulation; substantial population of the septal units preserved regular burst activity. Main characteristics of theta-bursts were almost identical in both states, their mean frequency decreased to 3.5 Hz. The theta-rhythm in hippocampal EEG was usually absent; but low-frequency rhythmic activity could be evoked by electrical or sensory stimulation as well as by injection of bemegrid or physostigmine. The data show that the ascending brain-stem afferents control: the frequency of the bursts in a population of septal units regarded as bursting pace-maker cells; the total number of the septal cells secondarily (synaptically) involved into rhythmic activity. The effect of pentobarbital upon theta-rhythm results from elimination of these influences upon the septal cells.  相似文献   

7.
Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5′-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG+ and TEA+. Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear.  相似文献   

8.
An estimation was carried out by factor analysis method of informative value of alpha-like rhythm, EEG theta-rhythm, local cerebral blood filling and oxygen tension (pO2) in estimation of functional state of cerebral structures under submaximal physical loads. Experiments were carried out on 35 rabbits with electrodes chronically implanted in the sensorimotor cortex and reticular formation. The obtained values were processed by a variant of factor analysis--a method of main components. For interpretation of factor loads matrix an orthogonal turn of factor axes was carried out according to varimax criterion. It has been established that informative value of the parameters depends on the brain structure where the given parameters were defined. Dynamics of pO2 and the theta-rhythm mostly influence the changes in other parameters. The states of structures before and during the period of physical load after-effect are mostly characterized by the brain local blood filling and less by the theta-rhythm amplitude.  相似文献   

9.
The role of 5-hydroxytryptamine (5-HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5-HT on the cytosolic free calcium concentration ([Ca(2+)](i)) in leech neurons. As [Ca(2+)](i) plays a pivotal role in numerous cellular processes, we investigated the effect of 5-HT on [Ca(2+)](i) (measured by Fura-2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5-HT induced a [Ca(2+)](i) increase which was predominantly due to Ca(2+) influx since it was abolished in Ca(2+)-free solution. The 5-HT-induced Ca(2+) influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage-dependent Ca(2+) channels. In P and N1 neurons, the membrane depolarization was due to Na(+) influx through cation channels coupled to 5-HT receptors, whereby the dose-dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5-HT receptor-coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage-dependent Ca(2+) channels was evoked by 5-HT-triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5-HT had no effect on [Ca(2+)](i).  相似文献   

10.
Bakharev BV  Zhadin MN 《Biofizika》2004,49(4):747-755
The dependence of the postsynaptic potential amplitude on the membrane potential was entered into the earlier derived integral equations describing the interactions between excitatory and inhibitory populations of neocortical neurons. The influence of the potential dependence on steady states and the stable region of oscillations of the mean membrane potential of neurons were investigated. Encephalograms of humans and animals in different functional states were numerically simulated. The real form of a power spectrum of electroencephalogram was obtained. The occurrence of the nonregular spindle-shaped activity was revealed, which expands the frequency of basic oscillations and widens the spectral peak. In the unsteady region, the existence of a limiting cycle and the possibility of arising of the pathological activity observed upon abnormal brain functioning were shown with the help of the numerical nonlinear analysis.  相似文献   

11.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

12.
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 mug/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 +/- 3 to 18 +/- 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50-75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 +/- 3 to 36 +/- 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 +/- 6 to 14 +/- 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 +/- 4 spikes/30 stimuli in six neurons was reduced to 10 +/- 2 spikes/30 stimuli by EA, which was restored rapidly to 28 +/- 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 +/- 4 to 18 +/- 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.  相似文献   

13.
Various reflexes inhibit gastric motor activity. Might a contrary one permit the oral region to increase gastric motility? Ten fasted rats were allowed to feed for 15 min. Following anesthesia and cannula insertion, antral pressure was recorded during three consecutive 5-min intervals: the baseline, procedure, and postprocedure periods. The procedure involved manually lowering and raising the mandible about once per second, causing repetitive molar occlusion. Doing this when food is in the stomach resembles conditions as the latter part of a meal is consumed. Gastric motor events increased from 1.10 +/- 1.67 (mean +/- SD) to 5.50 +/- 4.12 per 5 min during the procedure (p < 0.05) and 5.80 +/- 3.97 in the ensuing period (p < 0.05). The findings suggest an excitatory reflex following stimulation of mechanoreceptors in one or more sites related to mastication: the periodontium, temporomandibular joints, or masticatory muscles. Because rubbing the maxillary molars while the mouth remained constantly open also increased motor events, the periodontium is the most likely location of the receptors. They and associated trigeminal neurons would comprise the reflex's afferent arm. The vagi, perhaps with intermediaries, are its likely efferent arm. In these recently fed rats this reflex acts despite receptive relaxation and enterogastric reflexes to increase distal gastric motor activity.  相似文献   

14.
Extra- and intracellular responses of neurons in the primary somatosensory cortex to repetitive mechanical stimulation of the vibrissae at different frequencies were studied in unanesthetized curarized adult cats. Unlike responses to electrical stimulation of the combined afferent input (the infraorbital nerve) spike discharges of neurons in response to vibrissal stimulation can reproduce rather higher frequencies of stimulation and their initial character changes more often in the course of the repetitive series. Most cortical neurons were characterized by limitation of the area of their peripheral receptive fields with an increase in the frequency of adequate repetitive stimulation. A group of cortical neurons was distinguished by its ability to respond to high-frequency stimulation and to generate burst discharges. Comparison of the frequency characteristics of spike responses of these cells and of inhibitory synaptic action in other cortical neurons led to the conclusion that this group of cells thus distinguished may be inhibitory cortical neurons. The role of interaction between excitatory and inhibitory processes arising in cortical neurons during repetitive stimulation of different areas of their receptive fields is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 164–171, March–April, 1982.  相似文献   

15.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

16.
It is clear from reviewing the findings of our own studies and those of others that the cerebral cortex has combined two very different strategies of organisation. Firstly it has a strictly defined genetically determined substrate of specific neurons classes, specific rules for which kinds of cells interconnect, a laminar architecture where efferent and afferent relays and interlaminar links are predetermined. But, as well, a second strategy allows great developmental lability in the precise spatial patterns of intralaminar circuits of the excitatory neurons and in the actual weights of excitatory and inhibitory synapses that are contributed to each neuron. This second strategy presumably allows the cortex to be tailor-made to the early experience of each individual and, as well, allow for lability of responses to different conditions of stimulation and adjustment of the system to compensate to some degree for injuries affecting afferents and circuitry in the adult system.  相似文献   

17.
Background activity of the hippocampal neurons, extracellularly recorded in waking chronic rabbits, was analysed in control state and after systemic injection of physostigmine and scopolamine. Similar analysis was done in the hippocampus chronically deprived of ascending brain stem afferents. Cholinergic drugs controlled the number of hippocampal neurons with theta-modulation and the degree of its stability but not the frequency. Activation of cholinergic theta-rhythm resulted also in regularization of activity with suppression of delta-modulation and complex spike discharges; its blockade was accompanied by the opposite changes. Both drugs shifted the level of background activity in the majority of neurons, but the overall mean frequency did not vary between the states. Regression analysis demonstrated significant negative correlations with dominating decrease in the level of activity in high-frequency neurons ( > 25 sp/s) and its increase in low-frequency ones ( < 25 sp/s) after injection of both drugs. Stability of the overall mean frequency and uniformity of its shifts presumably indicate that the frequency, unlike the pattern of the background activity, is not directly controlled by the cholinergic septal input.  相似文献   

18.
Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.  相似文献   

19.
The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal pressure and volume changes were also monitored simultaneously with muscle tension changes. The results showed that the frequency of fast excitatory postsynaptic potentials (fEPSPs) in SMG neurons increased when colonic muscle tension decreased, when the colon relaxed and refilled with fluid after contraction, and during receptive relaxation preceding spontaneous colonic contractions. In contrast, fEPSP frequency decreased when colonic muscle tension increased during spontaneous colonic contraction and emptying. Manual stretch of the colon wall to 10-15% beyond resting length in the circumferential axis of flat sheet preparations increased fEPSP frequency in SMG neurons, but stretch in the longitudinal axis to 15% beyond resting length in the same preparations did not. There was no increase in synaptic input when tubular colon segments were stretched in their long axes up to 20% beyond their resting length. The circumferential stretch-sensitive increase in the frequency of synaptic input to SMG neurons persisted when the colonic muscles were relaxed pharmacologically by nifedipine (2 microM) or nicardipine (3 microM). These results suggest that colonic mechanosensory afferent nerves projecting to the SMG function as length or stretch detectors in parallel to the circular muscle layer.  相似文献   

20.
A computer model of neuronal processes in the motor cortex column is presented. The model is consisted of two pyramidal cell layers with two groups of inhibitory interneurons, selectively controlling pyramidal cell soma and dendrite, in each. Active Na, Ca and K conductances are included in the model of a single neuron. Horizontal excitatory connections between pyramidal cells in the upper layer are largely of NMDA-receptor type, that in the lower layer--of non-NMDA-type. All inhibitory synapses are of GABA(A)-type. The model reproduces the main phenomenon observed in the motor cortex during the execution of conditioned movements. Consequent to an early excitation the upper layer pyramidal cells generate a late NMDA-dependent reflexive response to afferent conditional stimulation, which as in a real case is diminished by GABA(A)-type synaptic inhibition and afferent stimulus strength increase. The characteristic inverse relation between the late response manifestation and the stimulus strength observed in the real cortex can be reproduced in the model only if NMDA-glutamate receptors were preferentially localized in the terminals of pyramidal cell backward collaterals, not in the terminals of the afferent fibers on pyramidal neurons. The intended component of motor cortex neuronal activity is generated in NMDA-independent manner by the pyramidal cells of lower layer. The slow time coarse of intended component as compared with short duration of AMPA epsp's is due to a consecutive relay-race--like activation of pyramidal neurons with different dendrit-to-soma ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号