首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Levels of autophagy markers rise upon treatment of cells with antidepressants. However, it was not known whether this phenomenon might be linked to other antidepressant pathways or to any physiological effect. In this punctum, we summarize and discuss our recent findings that provide evidence for a role of the cochaperone FKBP5/FKBP51 (FK506 binding protein 5) in autophagy as a prerequisite for antidepressant action in cells, mice, and humans. FKBP5 associates with BECN1, changes its phosphorylation and protein levels and enhances markers of autophagy and autophagic flux. The effects of antidepressants on autophagy as well as their physiological effects in mice and human depend on FKBP5.  相似文献   

2.
Xiaoli Sun  Yuhua Fu  Yuyin Pan 《Autophagy》2017,13(12):2111-2112
Protein misfolding is the common theme for neurodegenerative disorders including Huntington disease (HD), which is mainly caused by cytotoxicity of the mutant HTT (huntingtin) protein (mHTT). The soluble mHTT has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, among which the one recognized by the polyQ antibody 3B5H10 is the most toxic due to unknown mechanisms. In a recent study, we showed that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective macroautophagy/autophagy. In HD mouse brain tissues as well as HD patient fibroblasts and post-mortem brain tissues, the 3B5H10-recognized mHTT species lacks Lys63-polyubiquitination and SQSTM1/p62 interaction, which are essential for cargo recognition by selective autophagy. Collectively, we discovered that the mHTT protein is subject to conformation-dependent recognition by selective autophagy, which is more selective than what we perceived: the process can be selective among different conformations of the same protein, leading to conformation-dependent differences in protein degradation and toxicity.  相似文献   

3.
The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies.  相似文献   

4.
5.
Yuhua Fu  Xiaoli Sun 《Autophagy》2018,14(1):169-170
Macroautophagy/autophagy is an important cellular protein quality control process that clears intracellular aggregate-prone proteins. These proteins may cause neurodegenerative disorders such as Huntington disease (HD), which is mainly caused by the cytotoxicity of the mutant HTT/Hdh protein (mHTT). Thus, autophagy modulators may regulate mHTT levels and provide potential drug targets for HD and similar diseases. Meanwhile, autophagy function is also impaired in HD and other neurodegenerative disorders via unknown mechanisms. In a recent study, we identified a positive feedback mechanism that may contribute to mHTT accumulation and autophagy impairment in HD. Through genome-scale screening, we identified a kinase gene, HIPK3, as a negative modulator of autophagy and a positive regulator of mHTT levels in HD cells. Knocking down or knocking out HIPK3 reduces mHTT levels via enhancing autophagy in HD cells and in vivo in an HD knock-in mouse model. Interestingly, mHTT positively regulates HIPK3 mRNA levels in both HD cells and HD mouse brains, and this forms a positive feedback loop between mHTT and HIPK3. This loop potentially contributes to autophagy inhibition, mHTT accumulation, and disease progression in HD. The modulation of mHTT by HIPK3 is dependent on its kinase activity and its known substrate DAXX, providing potential HD drug targets. Collectively, our data reveal a novel kinase modulator of autophagy in HD cells, providing therapeutic entry points for HD and similar diseases.  相似文献   

6.
Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates.

This study describes the discovery and characterization of a nutrient-sensitive signaling pathway that drives growth and inhibits autophagy in mammalian cells. This pathway, which involves the non-receptor tyrosine kinase SRMS and the PHLPP scaffold protein FKBP51, promotes tumor growth and is amenable to pharmacological inhibition.  相似文献   

7.
A common finding among the expanded polyglutamine disorders is intracellular protein aggregates. Although the precise role of these aggregates in the disease process is unclear, they are generally ubiquitinated, implicating the ubiquitin-proteasome pathway in neuronal degeneration. To investigate the mechanism of aggregate formation, we have developed a cell culture model to express huntingtin designed to have an altered degradation rate through the ubiquitin-dependent N-end rule pathway. We fused the first 171 amino acids of huntingtin, containing either a pathogenic or normal polyglutamine tract, to the enhanced green fluorescent protein (EGFP). The half-life of soluble huntingtin-EGFP was dependent on the degradation signal and the polyglutamine tract length. However, once huntingtin-EGFP with a pathogenic tract had aggregated, the protein was extremely stable. Huntingtin-EGFP with a pathogenic glutamine tract and a shorter half-life displayed a delayed onset of aggregate formation and was more toxic to transfected cells. These data suggest that rapid clearance through the ubiquitin-proteasome pathway slows aggregate formation, yet increases cellular toxicity. Polyglutamine-induced neurotoxicity may therefore be triggered by non-aggregated protein, and aggregate formation itself may be a cellular defense mechanism.  相似文献   

8.
Dear Editor,Macroautophagy(referred to as autophagy herein)is an evolutionarily con served,lysosomal degradatio n process by which cells rid themselves of aggregated proteins and damaged organelles(He and Klionsky,2009).This process involves a finely orchestrated molecular pathway comprising a plethora of ATG proteins essential for autophagosome formation.The mammalian Unc-51-like kinase(ULK)complex plays an essential role to initiate canonical autophagy pathway by relaying upstream nutrient and stress signals to downstream autophagy machinery(Mizushima,2010;Wong et al.,2013).  相似文献   

9.
10.
11.
Large peptidyl-prolyl cis/trans isomerases (PPIases) are important components of the Hsp90 chaperone complex. In mammalian cells, either Cyp40, FKBP51 or FKBP52 is incorporated into these complexes. It has been suggested that members of this protein family exhibit both prolyl isomerase and chaperone activity. Here we define the structural and functional properties of the three mammalian large PPIases. We find that in all cases two PPIase monomers bind to an Hsp90 dimer. However, the affinities of the PPIases are different with FKBP52 exhibiting the strongest interaction and Cyp40 the weakest. Furthermore, in the mammalian system, in contrast to the yeast system, the catalytic activity of prolyl isomerization corresponds well to that of the respective small PPIases. Interestingly, Cyp40 and FKBP51 are the more potent chaperones. Thus, it seems that both the affinity for Hsp90 and the differences in their chaperone properties, which may reflect their interaction with the non-native protein in the Hsp90 complex, are critical for the selective incorporation of a specific large PPIase.  相似文献   

12.
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.  相似文献   

13.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

14.
15.
16.
Neye H 《Regulatory peptides》2001,97(2-3):147-152
Immunophilins are known as intracellular receptors for the immunosuppressant drugs, cyclosporin A, FK506, and rapamycin. They can be divided into two groups, cyclophilins that bind cyclosporin A and FK506 binding proteins (FKBPs) that bind FK506 and rapamycin. Many efforts were made to elucidate the physiological role of the immunophilins. Many of them are involved in intracellular signalling as they bind to calcium channels or to steroid receptor complexes. A yeast two-hybrid screen was used to identify further target proteins that interact with known proteins. Recently, a 48-kDa FKBP associated protein (FAP48) was isolated that binds to FKBP12 and FKBP52. Binding of FAP48 to FKBPs is inhibited by the macrolide FK506 indicating that the binding sites on the immunophilins coincide with the binding site for FK506. A peptidyl-prolyl motif on FAP48 should be responsible for the binding of the protein to FKBPs. We sequentially point mutated proline sites on FAP48 and checked the mutant proteins for interaction with FKBP12 and FKBP52. Mutation of proline 219 to alanine leads to a loss of interaction indicating that a cysteinyl prolyl site might be responsible for the binding of FAP48 to FKBPs. Thus we identified proline 219 being essential for the interaction.  相似文献   

17.
Pulmonary hypertension is a potentially lethal condition, which affects adults and children alike. Genetic factors are implicated in the causation of primary pulmonary hypertension. We investigate the role of polymorphism in the 5HTT gene in the etiology of pulmonary hypertension in children aged 1-18.8 years. We have tested the hypothesis that the 5HTT gene does contribute to the pathogenesis of this disease in children by comparing the allelic frequencies of both the long and short variants between children with idiopathic pulmonary hypertension and pulmonary hypertension secondary to underlying pulmonary disease. We found that homozygosity for the long variant of 5HTT was highly associated with idiopathic pulmonary hypertension in children, suggesting perhaps a more important role for 5HTT gene function in the pathogenesis of early onset disease.  相似文献   

18.
We have identified a new first step in the hormonal activation of the glucocorticoid receptor (GR). Rather than causing immediate dissociation of the cytoplasmic GR heterocomplex, binding of hormone-induced substitution of one immunophilin (FKBP51) for another (FKBP52), and concomitant recruitment of the transport protein dynein while leaving Hsp90 unchanged. Immunofluorescence and fractionation revealed hormone-induced translocation of the hormone-generated GR-Hsp90-FKBP52-dynein complex from cytoplasm to nucleus, a step that precedes dissociation of the complex within the nucleus and conversion of GR to the DNA-binding form. Taken as a whole, these studies identify immunophilin interchange as the earliest known event in steroid receptor signaling and provide the first evidence of differential roles for FKBP51 and FKBP52 immunophilins in the control of steroid receptor subcellular localization and transport.  相似文献   

19.
Wu YC  Wang XJ  Yu L  Chan FK  Cheng AS  Yu J  Sung JJ  Wu WK  Cho CH 《PloS one》2012,7(5):e37572
Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号