首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is considerable interest in the management of insecticide resistance in mosquitoes. One possible approach to slowing down the evolution of resistance is to use late-life-acting (LLA) insecticides that selectively kill only the old mosquitoes that transmit malaria, thereby reducing selection pressure favoring resistance. In this paper we consider an age-structured compartmental model for malaria with two mosquito strains that differ in resistance to insecticide, using an SEI approach to model malaria in the mosquitoes and thereby incorporating the parasite developmental times for the two strains. The human population is modeled using an SEI approach. We consider both conventional insecticides that target all adult mosquitoes, and LLA insecticides that target only old mosquitoes. According to linearised theory the potency of the insecticide affects mainly the speed of evolution of resistance. Mutations that confer resistance can also affect other parameters such as mean adult life span and parasite developmental time. For both conventional and LLA insecticides the stability of the malaria-free equilibrium, with only the resistant mosquito strain present, depends mainly on these other parameters. This suggests that the main long term role of an insecticide could be to induce genetic changes that have a desirable effect on a vital parameter such as adult life span. However, when this equilibrium is unstable, numerical simulations suggest that a potent LLA insecticide can slow down the spread of malaria in humans but that the timing of its action is very important.  相似文献   

2.
3.
Invasion of the Anopheles mosquito midgut by the Plasmodium ookinete is a critical step in the malaria transmission cycle. We have generated a fluorescent P. berghei transgenic line that expresses GFP in the ookinete and oocyst stages, and used it to perform the first real-time analysis of midgut invasion in the living mosquito as well as in explanted intact midguts whose basolateral plasma membranes were vitally stained. These studies permitted detailed analysis of parasite motile behaviour in the midgut and cell biological analysis of the invasion process. Throughout its journey, the ookinete displays distinct modes of motility: stationary rotation, translocational spiralling and straight-segment motility. Spiralling is based on rotational motility combined with translocation steps and changes in direction, which are achieved by transient attachments of the ookinete's trailing end. As it moves from the apical to the basal side of the midgut epithelium, the ookinete uses a predominant intracellular route and appears to glide on the membrane in foldings of the basolateral domain. However, it traverses serially the cytoplasm of several midgut cells before entering and migrating through the basolateral intercellular space to access the basal lamina. The invaded cells commit apoptosis, and their expulsion from the epithelium invokes wound repair mechanisms including extensive lamellipodia crawling. A 'hood' of lamellipodial origin, provided by the invaded cell, covers the ookinete during its egress from the epithelium. The flexible ookinete undergoes shape changes and temporary constrictions associated with passage through the plasma membranes. Similar observations were made in both A. gambiae and A. stephensi, demonstrating the conservation of P. berghei interactions with these vectors.  相似文献   

4.
Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show that XA triggers a rapid rise in cytosolic calcium specifically in gametocytes that is essential for their differentiation into gametes. A member of a family of plant-like calcium dependent protein kinases, CDPK4, is identified as the molecular switch that translates the XA-induced calcium signal into a cellular response by regulating cell cycle progression in the male gametocyte. CDPK4 is shown to be essential for the sexual reproduction and mosquito transmission of P. berghei. This study reveals an unexpected function for a plant-like signaling pathway in cell cycle regulation and life cycle progression of a malaria parasite.  相似文献   

5.
We investigated the parasitology, pathogenicity (virulence) and infectivity to mosquitoes of blood infections in mice, of two strains, DS and DK, of the rodent malaria parasite Plasmodium chabaudi adami. Blood infections of DS were found to be highly pathogenic; the asexual parasites in these infections were fast-growing and showed no evidence of selectivity in their infection of host erythrocytes. In contrast to DS, blood infections of DK were much less pathogenic; the asexual parasites were slower-growing and showed a moderate degree of selectivity to a subset of erythrocytes which were not reticulocytes. In both DS and DK infections, infectivity to mosquitoes was highest before the peak of asexual parasitaemia had occurred; usually this did not coincide with the time when gametocyte numbers in the blood were highest. Infections with the pathogenic DS strain in CBA mice produced fewer gametocytes than did the less pathogenic DK strain. The DS strain infections in both CBA and C57 mice were also significantly much less infective to mosquitoes than the DK strain. Investigations by others on the related rodent malaria parasite subspecies, Plasmodium chabaudi chabaudi, have indicated that the mosquito infectivity of blood infections in mice tended to be higher in the more pathogenic (virulent) and lower in the less pathogenic strains of this parasite subspecies. This is the converse of the finding of the present investigation of blood infections of P. c. adami in mice in which a more pathogenic, or virulent, strain (DS) of these parasites was significantly much less infective to mosquitoes than was a less pathogenic strain (DK).  相似文献   

6.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   

7.
Malaria parasites vary in virulence, but the effects of mosquito transmission on virulence phenotypes have not been systematically analysed. Using six lines of malaria parasite that varied widely in virulence, three of which had been serially blood-stage passaged many times, we found that mosquito transmission led to a general reduction in malaria virulence. Despite that, the between-line variation in virulence remained. Forcing serially passaged lines through extreme population bottlenecks (<5 parasites) reduced virulence in only one of two lines. That reduction was to a level intermediate between that of the virulent parental and avirulent ancestral line. Mosquito transmission did not reverse the increased parasite replication rates that had accrued during serial passage, but it did increase rosetting frequencies. Re-setting of asexual stage genes during the sexual stages of the life cycle, coupled with stochastic sampling of parasites with variable virulence during population bottlenecks, could account for the virulence reductions and increased rosetting induced by mosquito transmission.  相似文献   

8.
9.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

10.
Anopheles longipalpis (Theobald) (Diptera: Culicidae) is a predominantly zoophilic mosquito that has not been implicated in malaria transmission. However, this species was collected indoors with An. funestus s.l. in southern Zambia, where transmission of Plasmodium falciparum is hyperendemic, and we initially misidentified it morphologically and molecularly as An. funestus s.l. The indoor resting density and blood-feeding behaviour of An. longipalpis were investigated during the 2004-05 and 2005-06 transmission seasons in Mufwafwi village in southern Zambia. Numbers of endophilic An. longipalpis increased towards the end of the rainy season. Although specimens were collected during human landing catches, the feeding behaviour of An. longipalpis was significantly biased towards cattle (88.7%), with other bloodmeals originating from dogs, goats and chickens. None of the 177 specimens of An. longipalpis were infected with P. falciparum. These data are consistent with existing reports that An. longipalpis is not involved in malaria transmission. However, more extensive sampling is necessary. Importantly, the correct identification of An. longipalpis is crucial for malaria control programmes in areas where An. funestus s.l and An. longipalpis exist sympatrically so that scarce resources are not wasted on the control of a non-vector.  相似文献   

11.
Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based 1H–15N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 μM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.  相似文献   

12.
Preclinical studies support the therapeutic potential of histone deacetylases inhibitors (HDACi) in combination with taxanes. The efficacy of combination has been mainly ascribed to a cooperative effect on microtubule stabilization following tubulin acetylation. In the present study we investigated the effect of paclitaxel in combination with two novel HDACi, ST2782 or ST3595, able to induce p53 and tubulin hyperacetylation. A synergistic effect of the paclitaxel/ST2782 (or ST3595) combination was found in wild-type p53 ovarian carcinoma cells, but not in a p53 mutant subline, in spite of a marked tubulin acetylation. Such a synergistic interaction was confirmed in additional human solid tumor cell lines harboring wild-type p53 but not in those expressing mutant or null p53. In addition, a synergistic cytotoxic effect was found when ST2782 was combined with the depolymerising agent vinorelbine. In contrast to SAHA, which was substantially less effective in sensitizing cells to paclitaxel-induced apoptosis, ST2782 prevented up-regulation of p21(WAF1/Cip1) by paclitaxel, which has a protective role in response to taxanes, and caused p53 down-regulation, acetylation and mitochondrial localization of acetylated p53. The synergistic antitumor effects of the paclitaxel/ST3595 combination were confirmed in two tumor xenograft models. Our results support the relevance of p53 modulation as a major determinant of the synergistic interaction observed between paclitaxel and novel HDACi and emphasize the therapeutic interest of this combination.  相似文献   

13.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate-mediated diseases. We have identified four novel alpha-glucosidase inhibitors by means of a drug design protocol involving the structure-based virtual screening under consideration of the effects of ligand solvation in the scoring function and in vitro enzyme assay. Because the newly identified inhibitors reveal in vivo antidiabetic activity as well as a significant potency with more than 70% inhibition of the catalytic activity of alpha-glucosidase at 50 microM, all of them seem to deserve further development to discover new drugs for diabetes. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   

14.
《Cell》2021,184(21):5357-5374.e22
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   

17.
We developed microsatellite markers for an important African malaria mosquito Anopheles funestus Giles. The microsatellite‐enriched genomic library was constructed and screened with single‐strand oligonucleotides [(CCT)17, (AAT)17, (CAG)17 and (GA)25] as probes. Among the 47 pairs of polymerase chain reaction primers screened, 31 produced successful and consistent amplification. Although only a few A. funestus individuals from one geographical location were used to screen microsatellite marker polymorphism, 27 markers were found polymorphic and four markers monomorphic. Most polymorphic markers are trinucleotide markers. Isolation of polymorphic microsatellite markers provide useful tools for A. funestus population genetic studies and genome mapping.  相似文献   

18.
Three pesticides were tested in the laboratory (Chlorpirifos, Temephos and Fenthion) against Culex pipiens larvae. The study was conducted in the Area of Tunis during the years 1984 to 1988. After several years of treatment with there organophosphoric compounds, the resistance rates reached by the treated larval population never exceeded 15, which is much lower than the rates observed in other countries.  相似文献   

19.
Abstract. In villages of northern Guadalcanal in the Solomon Islands, where the predominant malaria vector is An.farauti No. 1 and An. puctulatus is also involved, malaria transmission rates were compared for three zones: (1) non-intervention: 438 people in seventeen villages; (2) residual DDT house-spraying two cycles per year: 644 people in thirty villages; (3) bednets impregnated with permethrin 0.5 g/m2 twice per year, used by 580 people in sixteen villages. Regular DDT spraying in zones 1 and 3 had been withdrawn 18 months previously. Malariological blood smear surveys of children aged 1-9 years in August 1986 to January 1987 showed a mean-baseline malaria parasite rate of 38% (32/84). By February 19 88 , 18 months after introduction of impregnated bednets, the Plasmodium falciparum infection rate in children was lowest in the zone using impregnated bednets (21% of 29), intermediate in the untreated zone (29% of 34) and highest in the DDT zone (46% of 53), but these differences were not statistically significant. P.vivax infection rates were 9–14%. Using ELISA tests for malaria circumsporozoite antigen in the vectors, overall positivity rates were 0.7% of 49 ,902 An.farauti and 2.54% of 118 An.punctulatus, comprising 228 P.falciparum and 124 P. vivax infections. In the study zones, vector positivity rates were 0.93% of 31 ,615 An.farauti in the untreated zone; 0.32% of 16, 883 An.farauti in the DDT zone; 0.07% of 1404 An.farauti and 2.54% of 118 An.puctulatus in the impregnated bednet zone. There was no significant correlation between malaria parasite rates in the vectors and the children. Entomological inoculation rates were consistently highest in the untreated zone (1.6–2.8 infective bites/night), intermediate in the DDT zone (0.8– 1.1/night) and significantly lowest in the bednet zone (0.03-0.23/night). Geometric mean densities of P.falciparum sporozoites were also significantly higher in the DDT zone (50% > 10,000 sporozoites/mosquito compared with 20% in untreated zone). The highest individual infection density was an estimated 52,080 sporozoites of P.falciparum in a specimen of An.punctulatus from the bednet zone. P.vivax sporozoite densities were not significantly different between zones, and both species of vector had similar mean sporozoite loads for both species of malaria. It is concluded that permethrin-impregnated mosquito nets exerted significantly more impact on vector infectivity and the inoculation rate than resulted from DDT spraying. Even so, the inoculation rate for people in the bednet zone remained at one infective bite every 4–32 days, an insufficient reduction to control malaria without additional countermeasures. Ineffectiveness of house-spraying and the limited impact of impregnated bednets are attributed to exophily and other behavioural aspects of An. farauti.  相似文献   

20.
The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号